【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.

【答案】(1) ,;(2) .

【解析】試題分析:(1)消去參數(shù)得到的普通方程為.利用可以把的極坐標方程化為直角坐標方程.

(2)把的直角方程轉化為參數(shù)方程,利用點到直線的距離公式算出距離為,利用得到.因為直線與橢圓是相離的,所以,分類討論就可以得到相應的值.

解析:(1)由曲線的參數(shù)方程,消去參數(shù) ,可得 的普通方程為:

由曲線的極坐標方程得, ∴曲線的直角坐標方程為

(2)設曲線上任意一點 ,,則點到曲線 的距離為.∵, ∴,

時,,即;

時,,即.∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.

(1)求的值;

(2)分別求出甲、乙兩組數(shù)據(jù)的方差,并由此分析兩組技工的加工水平;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學的發(fā)展推動著科技的進步,正是基于線性代數(shù)、群論等數(shù)學知識的極化碼原理的應用,華為的5G技術領先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術支持據(jù)市場調研預測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術的智能終端產(chǎn)品分別占比假設兩家公司的技術更新周期一致,且隨著技術優(yōu)勢的體現(xiàn)每次技術更新后,上一周期采用G公司技術的產(chǎn)品中有20%轉而采用H公司技術,采用H公司技術的僅有5%轉而采用G公司技術設第n次技術更新后,該區(qū)域市場中采用H公司與G公司技術的智能終端產(chǎn)品占比分別為,不考慮其它因素的影響.

(1)用表示,并求實數(shù)使是等比數(shù)列;

(2)經(jīng)過若干次技術更新后該區(qū)域市場采用H公司技術的智能終端產(chǎn)品占比能否達到75%以上?若能,至少需要經(jīng)過幾次技術更新;若不能,說明理由?(參考數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,

(I)證明:平面平面;

(II)若 三棱錐的體積為,求該三棱錐的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據(jù)莖葉圖能得到的正確結論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】程序框圖如圖,當輸入x為2016時,輸出的y的值為(

A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出s的值為11,那么輸入的n值等于(

A.5
B.6
C.7
D.8

查看答案和解析>>

同步練習冊答案