分析 寫出g(x)的解析式,判斷g(x)的單調(diào)性,根據(jù)零點(diǎn)個(gè)數(shù)得出g(x)在單調(diào)區(qū)間端點(diǎn)處的函數(shù)值符號(hào),列不等式解出k的范圍.
解答 解:g(x)=f(x)-k=$\left\{\begin{array}{l}{\frac{3}{x-1}-k,x≥2}\\{{2}^{x}-1-k,0≤x<2}\\{1-{2}^{x}-k,x<0}\end{array}\right.$,
∴g(x)在(-∞,0)上為減函數(shù),在[0,2)上為增函數(shù),在[2,+∞)上為減函數(shù).
且$\underset{lim}{x→-∞}g(x)$=1-k,g(0)=-k,g(2)=3-k,$\underset{lim}{x→+∞}$g(x)=-k,
∵函數(shù)g(x)=f(x)-k有三個(gè)零點(diǎn),且g(x)為連續(xù)函數(shù),
∴$\left\{\begin{array}{l}{1-k>0}\\{-k<0}\\{3-k>0}\end{array}\right.$,解得0<k<1.
故答案為(0,1).
點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)與函數(shù)單調(diào)性的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com