14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{5}(1-x),(x<1)}\\{-(x-2)^{2}+2,(x≥1)}\end{array}\right.$,則關(guān)于方程f(|x|)=a,(a∈R)實根個數(shù)不可能為( 。
A.2B.3C.4D.5

分析 由題意可得求函數(shù)y=f(|x|)的圖象和直線y=a的交點個數(shù).作出函數(shù)y=f(|x|)的圖象,平移直線y=a,即可得到所求交點個數(shù),進而得到結(jié)論.

解答 解:方程f(|x|)=a,(a∈R)實根個數(shù)
即為函數(shù)y=f(|x|)和直線y=a的交點個數(shù).
由y=f(|x|)為偶函數(shù),可得圖象關(guān)于y軸對稱.
作出函數(shù)y=f(|x|)的圖象,如圖,
平移直線y=a,可得它們有2個、3個、4個交點.
不可能有5個交點,即不可能有5個實根.
故選:D.

點評 本題考查方程的實根個數(shù)問題的解法,注意運用轉(zhuǎn)化思想和數(shù)形結(jié)合的方法,考查判斷和作圖能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在興趣小組的4名男生和3名女生中選取3人參加某競賽,要求男生女生都至少有1人,則不同的選取方法有( 。┓N.
A.20B.30C.35D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,三個內(nèi)角A,B,C的對邊分別是a.b.c,已知B=30°,c=150,b=50$\sqrt{3}$,那么這個三角形是( 。
A.等邊三角形B.等腰三角形
C.直角三角形D.等腰三角或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)為二次函數(shù),且f(1)=1,f(x+1)-f(x)=-4x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知空間四邊形ABCD,E、H分別是AB、AD的點,F(xiàn)、G分別是邊BC、DC的點(如圖),且EFGH是矩形,求證:
(1)AC∥面EFGH.
(2)求異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=ax2+bx+c的圖象過點P(1,2)和點Q(-2,-1).
(1)用a表示b和c;
(2)如果對任意不為零的一切實數(shù)a,這個二次函數(shù)的圖象都不經(jīng)過點M(m,m2+1).求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點M(x,y)到點F(2,0)的距離與定直線x=$\frac{5}{2}$的距離之比為$\frac{2\sqrt{5}}{5}$,設(shè)點M的軌跡為曲線E
(Ⅰ)求曲線E的方程;
(Ⅱ)設(shè)F關(guān)于原點的對稱點為F′,是否存在經(jīng)過點F的直線l交曲線E與A、B兩點,使得△F′AB的面積為$\sqrt{5}$?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{3}{x-1}}&{(x≥2)}\\{|{2^x}-1|}&{(x<2)}\end{array}}$,若函數(shù)g(x)=f(x)-k有三個零點,則實數(shù)k的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}$(φ為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4$\sqrt{3}$cosθ.
(Ⅰ)求C1與C2交點的直角坐標(biāo);
(Ⅱ)已知曲線C3的參數(shù)方程為$\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.

查看答案和解析>>

同步練習(xí)冊答案