10.已知集合A={x|1≤x≤4},B={x|x<2或x>4},求:
①A∩B
②∁R(A∪B)

分析 根據(jù)交集、并集和補(bǔ)集的定義,即可求出對應(yīng)的結(jié)果.

解答 解:①A∩B={x|1≤x≤4}∩{x|x<2或x>4}={x|1≤x<2},
②A∪B={x|1≤x≤4}∪{x|x<2或x>4}=R,
∴∁R(A∪B)=∅.

點(diǎn)評 本題考查了交集、并集和補(bǔ)集的運(yùn)算與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知e=2.71828…,設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-bx+alnx存在極大值點(diǎn)x0,且對于b的任意可能取值,恒有極大值f(x0)<0,則下列結(jié)論中正確的是( 。
A.存在x0=$\sqrt{a}$,使得f(x0)<-$\frac{1}{e}$B.存在x0=$\sqrt{a}$,使得f(x0)>-e
C.a的最大值為e2D.a的最大值為e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(I)若關(guān)于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,求實(shí)數(shù)a的取值范圍;
(II)對任意正實(shí)數(shù)x,y,不等式$\sqrt{2x}+\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的程序框圖中的錯誤是( 。
A.i沒有賦值B.循環(huán)結(jié)構(gòu)有錯C.s的計(jì)算不對D.判斷條件不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.整個上午(8:00~12:00)天氣越來越暖,中午時分(12:00~13:00)一場暴風(fēng)雨使天氣驟然涼爽了許多,暴風(fēng)雨過后,天氣轉(zhuǎn)暖,直到太陽落山(18:00)才又開始轉(zhuǎn)涼,畫出這一天8:00~20:00期間氣溫作為時間函數(shù)的一個可能的圖象,并說出所畫函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,連接其四個頂點(diǎn)組成的菱形面積為$8\sqrt{3}$,且a2、c2、b2成等差數(shù)列
(1)求橢圓E的方程;
(2)若斜率為1的直線l與橢圓E交于A、B兩點(diǎn),且點(diǎn)P(-3,2)在線段AB的垂直平分線上,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:(1)對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時,f(x)=2-x.
給出如下結(jié)論:
①對任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正確的有(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2cosφ,2sinφ),φ∈(90°,180°),$\overrightarrow$=(1,1),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.φB.45°+φC.135°-φD.φ-45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在空間,若長方體的長、寬、高分別為a、b、c,則長方體的對角線長為$\sqrt{{a}^{2}+^{2}+{c}^{2}}$.將此結(jié)論類比到平面內(nèi),可得:矩形的長、寬分別為a、b,則矩形的對角線長為$\sqrt{{a}^{2}+^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案