已知f(x)是定義在(0,+∞)上的增函數(shù),則不等式f(x)>f(8x-16)的解集為( 。
A、(0,+∞)
B、(0,2)
C、(0,
16
7
D、(2,
16
7
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意根據(jù)函數(shù)的定義域和單調(diào)性可得x>8x-16>0,由此求得x的范圍.
解答: 解:由題意可得x>8x-16>0,求得 2<x<
16
7
,
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c成等比數(shù)列,則二次函數(shù)f(x)=ax2+bx+c的圖象與x軸交點(diǎn)個(gè)數(shù)是( 。
A、0B、0或1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)沒(méi)有零點(diǎn)且圖象是連續(xù)不斷的曲線,又f(x-2012)的圖象關(guān)于點(diǎn)(2012,0)對(duì)稱.若函數(shù)定義域內(nèi)的三個(gè)值a、b、c足(a+b)(b+c)>0,(a+b)(c+a)>0,則f(a)+f(b)+f(c)的值( 。
A、大于零B、小于零
C、等于零D、正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)在(0,+∞)上是增函數(shù)的是( 。
A、y=
1
x
B、y=|x|
C、y=-x2
D、y=-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x3+ax2+x+2在定義域內(nèi)不存在極值,則a的取值范圍為( 。
A、(-∞,-
3
]∪[
3
,+∞)
B、[-
3
,
3
]
C、(-∞,-
3
)∪(
3
,+∞)
D、(-
3
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,若a2、a4是方程2x2-11x+8=0的兩根,則a3的值為(  )
A、2
B、±2
C、
2
D、±
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2•a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項(xiàng)和S9等于( 。
A、9B、18C、36D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校有教師160人,其中有高級(jí)職稱的32人,中級(jí)職稱的56人,初級(jí)職稱的72人.現(xiàn)抽取一個(gè)容量為20的樣本,用分層抽樣法抽取的中級(jí)職稱的教師人數(shù)應(yīng)為( 。
A、4B、6C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由y≤2及|x|≤y≤|x|+1圍成的幾何圖形的面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案