【題目】如圖,在梯形中,,,的中點,的交點,將沿翻折到圖的位置,得到四棱錐

1)求證:;

2)當時,求到平面的距離.

【答案】1)見解析;(2.

【解析】

1)在圖中,證明四邊形為菱形,可得出,由翻折的性質(zhì)得知在圖中,,,利用直線與平面垂直的判定定理證明出平面,可得出,并證明出四邊形為平行四邊形,可得出,由此得出;

2)解法一:由(1)可知平面,結(jié)合,可得出平面,由此得出點到平面的距離為的長度,求出即可;

解法二:證明出平面,可計算出三棱錐的體積,并設(shè)點與面的距離為,并計算出的面積,利用三棱錐的體積和三棱錐的體積相等計算出的值,由此可得出點到平面的距離.

1)圖中,在四邊形中,,

四邊形為平行四邊形.

,四邊形為菱形,,,

在圖中,,又,

平面.

又在四邊形中,,,

四邊形為平行四邊形,;

2)法一:由(1)可知,且,平面,

的長度即為點到平面的距離,

由(1)已證四邊形為平行四邊形,所以,

因此,點到平面的距離為;

解法二:連接,,,,

,,.

平面

設(shè)點與面的距離為,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是:(

1)使的值為的賦值語句是;

2)用秦九韶算法求多項式的值時,的值

3;

4)用輾轉(zhuǎn)相除法求得的最大公約數(shù)是.

A.1)(2B.2)(3C.1)(4D.2)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘畢達哥拉斯學(xué)派研究了“多邊形數(shù)”,人們把多邊形數(shù)推廣到空間,研究了“四面體數(shù)”,下圖是第一至第四個四面體數(shù),(已知

觀察上圖,由此得出第5個四面體數(shù)為______(用數(shù)字作答);第個四面體數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求a的值和函數(shù)f(x)的定義域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求實數(shù)的值;

2)設(shè),若不等式都成立,求實數(shù)的取值范圍;

3)若時,求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若直線l與曲線C相交于A,B兩點,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線經(jīng)過點,其傾斜角為.以原點為極點,以軸非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.設(shè)曲線的極坐標方程為

1)寫出直線的參數(shù)方程,若直線與曲線有公共點,求的取值范圍.

2)設(shè)為曲線上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

(1)求的值;

(2)若,且對任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細胞作為主要攻擊目標,使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數(shù)統(tǒng)計表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼x

1

2

3

4

5

6

7

8

感染者人數(shù)單位:萬人

85

請根據(jù)該統(tǒng)計表,畫出這八年我國艾滋病病毒感染人數(shù)的折線圖;

請用相關(guān)系數(shù)說明:能用線性回歸模型擬合yx的關(guān)系;

建立y關(guān)于x的回歸方程系數(shù)精確到,預(yù)測2019年我國艾滋病病毒感染人數(shù).

參考數(shù)據(jù):;,,

參考公式:相關(guān)系數(shù),

回歸方程中, ,

查看答案和解析>>

同步練習(xí)冊答案