【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求實數(shù)的值;

2)設(shè),若不等式都成立,求實數(shù)的取值范圍;

3)若時,求函數(shù)的零點.

【答案】1,.(23)見解析

【解析】

1)根據(jù)根與系數(shù)關(guān)系列方程組,解方程組求得的值.

2)將不等式轉(zhuǎn)化為,求得左邊函數(shù)的最小值,由此解一元二次不等式求得的取值范圍.

3)利用判別式進(jìn)行分類討論,結(jié)合函數(shù)的定義域,求得函數(shù)的零點.

1)因為不等式的解集為,所以-3,1為方程的兩個根,

由根與系數(shù)的關(guān)系得

,即,

2)當(dāng)時,

因為不等式都成立,

所以不等式對任意實數(shù)都成立.

,

所以

當(dāng)時,,

所以,即,得

所以實數(shù)的取值范圍為

3)當(dāng)時,

函數(shù)的圖像是開口向上且對稱軸為的拋物線,

①當(dāng),即時,恒成立,函數(shù)無零點.

②當(dāng),即時,

(ⅰ)當(dāng)時,,此時函數(shù)無零點.

(ⅱ)當(dāng)時,,此時函數(shù)有零點3

③當(dāng),即時,令,得

(。┊(dāng)時,得,此時,

所以當(dāng)時,函數(shù)無零點.

(ⅱ)當(dāng)時,得,此時,所以當(dāng)時,函數(shù)有兩個零點:,

綜上所述:當(dāng),時,函數(shù)無零點;

當(dāng),時,函數(shù)有一個零點為3;

當(dāng),時,函數(shù)有兩個零點:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為.

1)當(dāng)時,若函數(shù)在區(qū)間上有最大值,求的取值范圍;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點P為平面上的動點,過點P作直線l的垂線,垂足為Q,且

求動點P的軌跡C的方程;

設(shè)點P的軌跡Cx軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=ax2-2xex,其中a≥0

1)當(dāng)a=時,求fx)的極值點;

2)若fx)在[-11]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母表示,早在公元480年左右,南北朝時期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點后7位的結(jié)果,他是世界上第一個把圓周率的數(shù)值計算到小數(shù)點后第七位的人,這比歐洲早了約1000年,在生活中,我們也可以通過設(shè)計下面的實驗來估計的值;從區(qū)間內(nèi)隨機(jī)抽取200個數(shù),構(gòu)成100個數(shù)對,其中滿足不等式的數(shù)對共有11個,則用隨機(jī)模擬的方法得到的的近似值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系平面上的一列點,,…,,記為,若由構(gòu)成的數(shù)列滿足,,其中為與軸正方向相同的單位向量,則稱點列.

1)判斷,,,…,,是否為點列,并說明理由;

2)若點列.且點在點的右上方,(即)任取其中連續(xù)三點,,判斷的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;

3)若點列,正整數(shù),滿足.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;

(2)設(shè)的導(dǎo)函數(shù),若對任意的恒成立,求的取值范圍;

(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲,乙兩個車間生產(chǎn)同一種產(chǎn)品,甲車間有工人人,乙車間有工人人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進(jìn)行統(tǒng)計,按照進(jìn)行分組,得到下列統(tǒng)計圖.

分別估算兩個車間工人中,生產(chǎn)一件產(chǎn)品時間少于的人數(shù);

分別估計兩個車間工人生產(chǎn)一件產(chǎn)品時間的平均值,并推測車哪個車間工人的生產(chǎn)效率更高?

從第一組生產(chǎn)時間少于的工人中隨機(jī)抽取人,求抽取人中,至少人生產(chǎn)時間少于的概率.

查看答案和解析>>

同步練習(xí)冊答案