【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且,,.
(1)求角A的大。
(2)若a=3,求△ABC的周長(zhǎng)L的取值范圍.
【答案】(1)
(2)L∈(6,9]
【解析】
(1)由條件可得,再結(jié)合正弦定理及三個(gè)角之間的關(guān)系可得,進(jìn)而求出A;
(2)利用余弦定理再結(jié)合基本不等式,求得3<b+c≤6,即可得到周長(zhǎng)L的范圍.
(1)由題意,,.
所以,
由正弦定理,可得,
因?yàn)?/span>,所以sinB=sin(A+C)=sinAcosC+cosAsinC,
又由,則,
整理得,又因?yàn)?/span>,所以.
(2)由(1)和余弦定理,即,
即,整理得,
又由(當(dāng)且僅當(dāng)b=c=3時(shí)等號(hào)成立)
從而,可得b+c≤6,
又b+c>a=3,∴3<b+c≤6,從而周長(zhǎng)L∈(6,9].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四棱柱的底面邊長(zhǎng)為1,高為2,為線段的中點(diǎn),求:
(1)三棱錐的體積;
(2)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖為某地區(qū)2006年~2018年地方財(cái)政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲(chǔ)蓄年末余額折線圖.根據(jù)該折線圖可知,該地區(qū)2006年~2018年( )
A.財(cái)政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲(chǔ)蓄年末余額均呈增長(zhǎng)趨勢(shì)
B.財(cái)政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲(chǔ)蓄年末余額的逐年增長(zhǎng)速度相同
C.財(cái)政預(yù)算內(nèi)收入年平均增長(zhǎng)量高于城鄉(xiāng)居民儲(chǔ)蓄年末余額年平均增長(zhǎng)量
D.城鄉(xiāng)居民儲(chǔ)蓄年末余額與財(cái)政預(yù)算內(nèi)收入的差額逐年增大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>,求的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn).若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),,若對(duì)任意,且,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);
(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),,對(duì)于定義在上的函數(shù),有下述命題:
①“是奇函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱”;
②“是偶函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于直線對(duì)稱”;
③“是的一個(gè)周期”的充要條件是“對(duì)任意的,都有”;
④“函數(shù)與的圖像關(guān)于軸對(duì)稱”的充要條件是“”
其中正確命題的序號(hào)是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直三棱柱中, , , ,點(diǎn)是線段上的動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)是的中點(diǎn)時(shí),求證: 平面;
(2)線段上是否存在點(diǎn),使得平面平面?若存在,試求出的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com