【題目】已知實數(shù),,對于定義在上的函數(shù),有下述命題:

①“是奇函數(shù)”的充要條件是“函數(shù)的圖像關于點對稱”;

②“是偶函數(shù)”的充要條件是“函數(shù)的圖像關于直線對稱”;

③“的一個周期”的充要條件是“對任意的,都有”;

④“函數(shù)的圖像關于軸對稱”的充要條件是“

其中正確命題的序號是( )

A.①②B.②③C.①④D.③④

【答案】A

【解析】

①根據(jù)奇函數(shù)的定義判斷;②根據(jù)偶函數(shù)的定義判斷;③根據(jù)周期性的定義判斷;④根據(jù)對稱性定義判斷.

①:因為圖象是由向右平移個單位得到的,所以是奇函數(shù)圖像關于原點對稱函數(shù)的圖像關于點對稱,故正確;

②:由①同理可知:是偶函數(shù)圖像關于軸對稱函數(shù)的圖像關于直線對稱,故正確;

③:設,的一個周期,所以,所以不成立,故錯誤;

④:設,所以,,此時的圖象關于軸對稱,但是不一定成立,故錯誤;

所以正確命題序號為:①②.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】的表格填上數(shù)字,設在第i行第j列所組成的數(shù)字為,,,則表格中共有51的填表方法種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓,左、右焦點分別是、,為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點

1)求橢圓的方程;

2)設橢圓,為橢圓上任意一點,過點的直線交橢圓兩點,射線交橢圓于點

①求的值;

②令,的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】表示不大于實數(shù)的最大整數(shù),函數(shù),若關于的方程有且只有5個解,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】n為正整數(shù)集合A=對于集合A中的任意元素

M=

n=3 ,MM的值;

n=4,BA的子集且滿足對于B中的任意元素,相同時M是奇數(shù)不同時,M是偶數(shù).求集合B中元素個數(shù)的最大值;

給定不小于2n,BA的子集且滿足對于B中的任意兩個不同的元素,

M=0.寫出一個集合B,使其元素個數(shù)最多并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A是同時符合以下性質(zhì)的函數(shù)f(x)組成的集合:

x[0,+),都有f(x)∈(1,4];f(x)[0,+)上是減函數(shù).

(1)判斷函數(shù)f1(x)2f2(x)1 (x0)是否屬于集合A,并簡要說明理由;

(2)(1)中你認為是集合A中的一個函數(shù)記為g(x),若不等式g(x)g(x2)k對任意的x0總成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為

②若,則函數(shù)的最小值為

③若,滿足,則的最小值為

④函數(shù)的最小值為

正確的有__________.(把你認為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知(單位:米),要求圓M分別相切于點BD,圓分別相切于點CD

(1)若,求圓的半徑;(結(jié)果精確到0.1米)

(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)

查看答案和解析>>

同步練習冊答案