A. | 120° | B. | 90° | C. | 60° | D. | 30° |
分析 利用根的判別式△=b2-4ac=0求得b2+c2-a2=bc,利用余弦定理即可求得cosA的值,結(jié)合A的范圍即可得解A的值.
解答 解:∵(a2+bc)x2+2$\sqrt{^{2}+{c}^{2}}$x+1=0有兩個相等的實數(shù)根,
∴△=4(b2+c2)-4(a2+bc)=0,整理可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,180°),
∴A=60°.
故選:C.
點(diǎn)評 本題考查了根的判別式、勾股定理的逆定理,余弦定理在解三角形中的應(yīng)用,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | (0,1)∪(1,2) | C. | (0,1)∪(1,2] | D. | (2,+∞)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<2} | B. | {x|x<-1或x≥2} | C. | {x|x≥2} | D. | {x|x≤-1或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com