13.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-2+x,x>0}\\{-{x^2}+bx+c,x≤0}\end{array}}$,若f(0)=-2,f(-1)=1,則函數(shù)g(x)=f(x)+x的零點的個數(shù)為3.

分析 由f(0)=-2,f(-1)=1直接求出b和c的值,然后寫出g(x)的解析式,在兩段中分別令函數(shù)值為0,解方程即可.

解答 解:由已知當(dāng)x≤0時f(x)=-x2+bx+c,
由待定系數(shù)得:$\left\{\begin{array}{l}{f(0)=c=-2}\\{f(-1)=-1-b+c=1}\end{array}\right.$解得c=-2,b=-4;
故f(x)=$\left\{\begin{array}{l}{x=-2,x>0}\\{-{x}^{2}-4x-2,x≤0}\end{array}\right.$,令f(x)+x=0,
分別解之得x1=2,x2=-1,x3=-2,即函數(shù)共有3個零點.
故答案為:3.

點評 本題考查待定系數(shù)法求分段函數(shù)的解析式、零點,屬基本運算的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a1,a2,a3,a4成等比數(shù)列,其公比為2,則$\frac{3{a}_{1}+{a}_{2}}{3{a}_{3}+{a}_{4}}$的值為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{\sqrt{3}}{2}$,已知點P(0,$\frac{3}{2}$)到橢圓C的右焦點F的距離是$\frac{\sqrt{57}}{2}$.設(shè)經(jīng)過點P且斜率存在的直線與橢圓C相交于A、B兩點,線段AB的中垂線與x軸相交于一點Q.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求點Q的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的通項為an=(-1)n(4n-3),則數(shù)列{an}的前50項和T50=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某校高一年級學(xué)生身體素質(zhì)能測試的成績(百分制)分布在[40,100]內(nèi),同時為了解學(xué)生愛好數(shù)學(xué)的情況,從中隨機抽取了n名學(xué)生,這n名學(xué)生體能測試成績的頻率分布直方圖如圖所示,各分?jǐn)?shù)段的“愛好數(shù)學(xué)”的人數(shù)情況如表所示.
 組數(shù)體能成績分組  愛好數(shù)學(xué)的人數(shù)占本組的頻率 
 第一組[50,60) 100 0.5
 第二組[60,70) 195 p
 第三組[70,80) 120 0.6
 第四組[80,90) a 0.4
 第五組[90,100]30  0.3

(1)求n、p的值;
(2)用分層抽樣的方法,從體能成績在[70,90)的“愛好數(shù)學(xué)”學(xué)生中隨機抽取6人參加某項活動,現(xiàn)從6人中隨機選取2人擔(dān)任領(lǐng)隊,求兩名領(lǐng)隊中恰有1人體能成績在[80,90)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x=4n+1,n∈Z}B={x|x=4n-3,n∈z},C={x|x=8n+1,n∈z},則A,B,C的關(guān)系是( 。
A.C是B的真子集、B是A的真子集B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=BD.A=B=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a,b,c為△ABC的三邊,且關(guān)于x的方程(a2+bc)x2+2$\sqrt{^{2}+{c}^{2}}$x+1=0有兩個相等的實數(shù)根,則A的度數(shù)是( 。
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在長方體ABCD-A1B1C1D1中,已知底面ABCD是邊長為1的正方形,側(cè)棱AA1=2,P是側(cè)棱CC1上的一點,CP=m(0<m<2).
(Ⅰ)試問直線B1D1與AP能否垂直?并說明理由;
(Ⅱ)若直線AP與平面BDD1B1所成角為60°,試確定m值;
(Ⅲ)若m=1,求平面PA1D1與平面PAB所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足an+1-an=1,a1=1,等比數(shù)列{bn},記數(shù)列 {bn}的前n項和為Sn,且b2=$\frac{16}{25}$,S2=$\frac{36}{25}$.
(1)求數(shù)列{an},{bn}的通項公式.
(2)設(shè)cn=an-bn,問數(shù)列{cn}是否存在最大項?若存在,求出最大項;若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案