17.二次函數(shù)y=f(x)滿足f(2-x)=f(2+x),f(1)>f(0),若f(a)≥f(0),則實數(shù)a的取值范圍是( 。
A.a≥0B.a≤0C.0≤a≤4D.a≤0或a≥4

分析 判斷函數(shù)的對稱軸,利用f(1)>f(0),判斷函數(shù)的開口方向,然后求解不等式即可.

解答 解:二次函數(shù)y=f(x)滿足f(2-x)=f(2+x),
可知函數(shù)的對稱軸為:x=2.f(0)=f(4),
f(1)>f(0),函數(shù)的開口向下,
f(a)≥f(0)=f(4),可得0≤a≤4.
故選:C.

點評 本題考查二次函數(shù)的性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知三點P($\frac{5}{2}$,-$\frac{3}{2}$)、A(-2,0)、B(2,0).求以A、B為焦點且過點P的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x+lnx-2的零點的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)集合M=(-∞,m],P={x|x≥-1,x∈R},若M∩P=∅,則實數(shù)m的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a>1,則$a+\frac{2}{a-1}$的最小值是2$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)是一個定義在(0,+∞)上的函數(shù),當(dāng)x>1時,f(x)>0,且對于(0,+∞)上的任意兩個實數(shù)a、b,有f(a)+f(b)=f(ab).
(1)求f(1)的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知關(guān)于x的不等式$\frac{ax-6}{x-a}<0$的解集為M.
(1)當(dāng)a=2時,求集合M;
(2)若2∈M且6∈M,求實數(shù)a的取值范圍.
(3)不等式|x-8|≥2的解集為S,若M∪S=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某種商品在近30天內(nèi)每件的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系p=$\left\{\begin{array}{l}{t+20,0<t<25,t∈{N}^{*}}\\{-t+70,25≤t≤30,t∈{N}^{*}}\end{array}\right.$
該商品的日銷售量Q(件)時間t(天)的函數(shù)關(guān)系Q=-t+40(0<t≤30,t∈N*
求該商品的日銷售額的最大值,并指出日銷售額最大一天是30天中的第幾天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)滿足f(-x)=f(x),當(dāng) a,b∈(-∞,0]時,總有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),若f(m+1)>f(2m),則實數(shù)m的取值范圍是(-∞,$-\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案