5.不等式ax2+bx+c>0的解集為(-2,1),則不等式cx2-bx+a<0的解集是(-∞,-1)∪($\frac{1}{2}$,+∞).

分析 由已知可得函數(shù)f(x)=ax2+bx+c的圖象開口朝下,且有兩個(gè)零點(diǎn)-2和1,由韋達(dá)定理,可得a,b,c之間的關(guān)系,進(jìn)而可將不等式cx2-bx+a<0化為:2x2+x-1>0,解得答案.

解答 解:若不等式ax2+bx+c>0的解集為(-2,1),
則函數(shù)f(x)=ax2+bx+c的圖象開口朝下,且有兩個(gè)零點(diǎn)-2和1,
故$-\frac{a}$=-1,$\frac{c}{a}$=-2,即b=a,c=-2a
故不等式cx2-bx+a<0可化為:-2ax2-ax+a<0,
即2x2+x-1>0,
解得:x∈(-∞,-1)∪($\frac{1}{2}$,+∞),
故答案為:(-∞,-1)∪($\frac{1}{2}$,+∞)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),二次不等式的解法,二次方程根與系數(shù)的關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一枚硬幣連擲2次,恰好出現(xiàn)1次正面的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知一個(gè)等差數(shù)列{an}的前10項(xiàng)的和為100,前100項(xiàng)的和為10,求前110項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在(0,+∞)上的單調(diào)函數(shù)f(x),?x∈(0,+∞),f(f(x)-x2)=2,則不等式f(x)>7x-11的解集為(0,3)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lg(3+x)+lg(3-x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a∈R,則“a=2”是“直線y=-ax+2與y=$\frac{a}{4}$x-1垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某工廠生產(chǎn)的廢氣經(jīng)過過慮后排放,過慮過程中廢氣的污染物數(shù)量P(單位:毫克/升)與時(shí)間t(單位:小時(shí))間的關(guān)系為P=P0e-kt(P0,k均為正常數(shù)).如果經(jīng)過6個(gè)小時(shí)過慮還剩80%的污染物,為了使剩余污染物不高于51.2%,則至少需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4x-6,x<2}\\{{x}^{2}-2ax,x≥2}\end{array}\right.$是R上的增函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)為奇函數(shù),且f(x)在(-∞,0)內(nèi)是增函數(shù),f(-3)=0,則xf(x)>0的解集為(-∞,-3)∪(3,+∞).

查看答案和解析>>

同步練習(xí)冊答案