考點(diǎn):數(shù)列與不等式的綜合,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)利用數(shù)學(xué)歸納法驗(yàn)證當(dāng)n=1時(shí),不等式成立.再假設(shè)a
k≥k+2,由此推導(dǎo)出a
k+1≥(k+1)+2,從而能證明a
n≥n+2.
(2)由已知得當(dāng)k≥2時(shí),a
k=a
k-1(a
k-1-k+1)+1≥2a
k-1+1,于是
≤
•
,k≥2,由此能證明
+
+…+
+…+
<
.
解答:
(1)證明:∵數(shù)列{a
n}中,a
1=4,a
n+1=a
n2-na
n+1,
∴①當(dāng)n=1時(shí),a
1=4≥1+2,不等式成立.
②假設(shè)當(dāng)n=k(k≥1)時(shí)成立,即a
k≥k+2,
∴a
k+1=a
k2-ka
k+1=a
k(a
k-k)+1≥(k+2)(k+2-k)+1≥k+3,
即n=k+1時(shí),a
k+1≥(k+1)+2,
∴由①②得a
n≥n+2.
∴a
n≥n+2.
(2)證明:∵a
n≥n+2,a
n+1=a
n2-na
n+1=a
n(a
n-n)+1,
∴當(dāng)k≥2時(shí),a
k=a
k-1(a
k-1-k+1)+1≥a
k-1(k-1+2-k+1)+1=2a
k-1+1
…
∴
ak≥2k-1a1+2k-2+…+2+1=2
k-1(a
1+1)-1,
于是
≤
•
,k≥2,
∴
n |
|
k=1 |
≤
+n |
|
k=2 |
=
n |
|
k=1 |
≤
=
,
∴
+
+…+
+…+
<
.
點(diǎn)評(píng):本題考查不等式的證明,解題時(shí)要注意數(shù)學(xué)歸納法、放縮法和累加法的合理運(yùn)用.