命題p:?x∈R,(x-1)(x+2)=0,﹁p是
 
考點:命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.
解答: 解:因為全稱命題的否定是特稱命題,所以命題p:?x∈R,(x-1)(x+2)=0,﹁p是:?x∈R,x≠1且x≠-2.
故答案為:?x∈R,x≠1且x≠-2.
點評:本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,前n項和為Sn,且滿足a2=5,S5-3a3=14.
(1)求數(shù)列{an}的通項公式an;
(2)數(shù)列{bn}為等比數(shù)列,且b1=a1,b2=a4,求{bn}前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橫空出世的林書豪在NBA刮起了“林旋風(fēng)”,其球衣銷售量排名全聯(lián)盟第二,如果每件售價680元,則銷售額y與銷售件數(shù)x之間的關(guān)系式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)的圖象過點A(
1
2
,4),則冪函數(shù)的解析式f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
4
-α)=
1
2
,α∈(0,π).求:
(1)
2sinα-3cosα
3sinα+2cosα
;
(2)sinα+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與單位圓的交點P的坐標(biāo)為(-
1
2
,-
3
2
),
(1)求sinα和cosα的值,
(2)求
sin(α-π)+cos(α+
π
2
)
tan(π+α)
的值,
(3)判斷tan(α+
π
4
)
的符號并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2-3i,z2=(
1+i
1-i
)2+
2
+
3
i
3
-
2
i

求:(1)z1+
.
z2

(2)z1•z2;          
(3)
z1
z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=4,an+1=an2-nan+1
(1)求證:an≥n+2;
(2)求證:
1
1+a1
+
1
1+a2
+…+
1
1+a3
+…+
1
1+an
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)=-(
1
2
 |x-
3
2
|
,則f(-
5
2
)=( 。
A、
1
4
B、
1
8
C、-
1
2
D、-
1
4

查看答案和解析>>

同步練習(xí)冊答案