3.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,則z=log2(2x-y)的最大值為( 。
A.log23B.0C.2D.1

分析 設(shè)2x-y=t,作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:令2x-y=t,如下圖所示,作不等式組所表示的區(qū)域,
作直線l:2x-y=t,平移l,
可知當(dāng)x=1,y=0時(shí),tmax=2,
zmax=log22=1,
故選:D.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用換元法結(jié)合目標(biāo)函數(shù)的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=a|x+1|在區(qū)間(-1,+∞)上為增函數(shù),則g(x)=$\frac{sinx}{lo{g}_{a}(x+2)}$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的奇函數(shù)f(x),滿足對任意t∈R都有f(2+t)+f(t)=0,且x∈[0,1]時(shí),f(x)=$\frac{ex}{{e}^{x}}$,若函數(shù)g(x)=f(x)-loga|x|在其定義域上有5個(gè)零點(diǎn),則實(shí)數(shù)a的值為( 。
A.7或$\frac{1}{7}$B.5或$\frac{1}{5}$C.3或$\frac{1}{3}$D.e或$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知p:|x-3|≤2,q:x2-2mx+m2-1≤0,若¬p是¬q的充分而不必要條件,則實(shí)數(shù)m的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{4-{2}^{-x},x≤0}\end{array}\right.$,若關(guān)于x的方程f(2x2+x)=a恰有6個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ為參數(shù)),點(diǎn)P(-1,0),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0.
(1)分別寫出曲線C1的普通方程與直線C2的參數(shù)方程;
(2)若曲線C1與直線C2交于A,B兩點(diǎn),求|PA|•|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知(1+2i)(1-ai)=5(i是虛數(shù)單位),則實(shí)數(shù)a的取值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a,b,c均為正數(shù),且(a+c)(b+c)=2,則a+2b+3c的最小值為( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,若∠A=120°,c=3,a=7,則△ABC的面積S=$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案