2.當(dāng)曲線y=-$\sqrt{4-{x}^{2}}$與直線kx-y+2k-4=0有兩個相異的交點時,實數(shù)k的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

分析 曲線y=-$\sqrt{4-{x}^{2}}$是以O(shè)(0,0)為圓心,以2為半徑的下半圓,直線kx-y+2k-4=0過定點D(-2,-4),由此作出圖形,結(jié)合圖形得當(dāng)曲線y=-$\sqrt{4-{x}^{2}}$與直線kx-y+2k-4=0有兩個相異的交點時,實數(shù)k的取值范圍.

解答 解:如圖,曲線y=-$\sqrt{4-{x}^{2}}$是以O(shè)(0,0)為圓心,以2為半徑的下半圓,
直線kx-y+2k-4=0過定點D(-2,-4),
A(-2,0),B(2,0),kBD=$\frac{-4-0}{-2-2}$=1,
設(shè)直線kx-y+2k-4=0與圓相切時,
圓心O(0,0)到直線的距離:
d=$\frac{|2k-4|}{\sqrt{{k}^{2}+1}}$=2,解得k=$\frac{3}{4}$,
結(jié)合圖形得當(dāng)曲線y=-$\sqrt{4-{x}^{2}}$與直線kx-y+2k-4=0有兩個相異的交點時,
實數(shù)k的取值范圍是($\frac{3}{4}$,1].
故選:C.

點評 本題考查實數(shù)的取值范圍的求法,考查圓、直線方程、點到直線的距離公式等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義方程f(x)=f'(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,如果函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=cosx($x∈(\frac{π}{2},\;π)$)的“新駐點”分別為α,β,γ,則α,β,γ從小到大排列是β、α、φ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0,
(1)當(dāng)a為何值時,直線l與圓C相切.
(2)當(dāng)直線l與圓C相交于A、B兩點,且|AB|=2$\sqrt{2}$時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某科考試題中有甲、乙兩道不同類型的選做題,且每道題滿分為10分,每位考生需從中任選一題作答.
(1)A同學(xué)將自己在該考試中歷次的選題及得分情況統(tǒng)計如下:
選甲題8次,得分分別為:6,10,10,6,6,10,6,10
選乙題10次,得分分別為:5,10,9,8,9,8,10,8,5,8
某次考試中,A同學(xué)的剩余時間僅夠閱讀并解答出甲、乙兩題中的某一道題,他應(yīng)該選擇甲題還是乙題?
(2)某次考試中,某班40名同學(xué)中選擇甲、乙兩題的人數(shù)相等,在16名該選做題獲得滿分的同學(xué)中有10人選的是甲題,則在犯錯誤概率不超過1%的情況下,判斷該選做題得滿分是否與選題有關(guān)?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
參考數(shù)據(jù):
P(K2≥k00.10.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=2|x+1|-x的最小值為b.
(Ⅰ)求b;
(Ⅱ)已知a≥b,求證:$\sqrt{2a-b}+\sqrt{{a^2}-b}≥a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓P過A(-8,0),B(2,0),C(0,4)三點,圓Q:x2+y2-2ay+a2-4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow$,則x的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{a}$與$\overrightarrow$均為單位向量,它們的夾角為120°,那么|$\overrightarrow{a}$+3$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作不愿意做志愿者工作合計
男大學(xué)生610
女大學(xué)生90
合計800
(1)根據(jù)題意完成表格;
(2)是否有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

同步練習(xí)冊答案