【題目】設(shè)數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),則數(shù)列{bn}的公比為 .
【答案】3+2
【解析】解:設(shè)等差數(shù)列{an}的公差為d,
由a1<a2可得d>0,
∴b1=a12 , b2=a22=(a1+d)2 ,
b3=a32=(a1+2d)2 ,
∵數(shù)列{bn}為等比數(shù)列,∴b22=b1b3 ,
即(a1+d)4=a12(a1+2d)2 ,
∴(a1+d)2=a1(a1+2d) ①
或(a1+d)2=﹣a1(a1+2d),②
由①可得d=0與d>0矛盾,應(yīng)舍去;
由②可得a1= d,或a1= d,
當(dāng)a1= d時(shí),可得b1=a12=
b2=a22=(a1+d)2= ,此時(shí)顯然與b1<b2矛盾,舍去;
當(dāng)a1= d時(shí),可得b1=a12= ,
b2=(a1+d)2= ,
∴數(shù)列{bn}的公比q= =3+2 ,
綜上可得數(shù)列{bn}的公比q=3+2 ,
所以答案是:3+2
【考點(diǎn)精析】關(guān)于本題考查的等比數(shù)列的基本性質(zhì),需要了解{an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對(duì)應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為,離心率為,過作與軸垂直的直線與橢圓交于兩點(diǎn),.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線的斜率存在且不為0,直線交橢圓于兩點(diǎn),若中點(diǎn)為,為原點(diǎn),直線交于點(diǎn),若以為直徑的圓過右焦點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x﹣y=1與圓M:x2+y2﹣2x+2y﹣1=0相交于A,C兩點(diǎn),點(diǎn)B,D分別在圓M上運(yùn)動(dòng),且位于直線AC兩側(cè),則四邊形ABCD面積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=kx2﹣kx,g(x)= ,若使得不等式f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立的實(shí)數(shù)k存在且唯一,則實(shí)數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù)a≥0,函數(shù)f(x)=x﹣ln2x+2alnx﹣1
(1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比較g(x)的最小值與0的大小;
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)求證:當(dāng)x>1時(shí),恒有x>ln2x﹣2alnx+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;
:實(shí)數(shù)滿足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為一種躍進(jìn)商品進(jìn)行合理定價(jià),將該商品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單位(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)按照上述數(shù)據(jù),求四歸直線方程,其中,;
(2)預(yù)計(jì)在今后的銷售中,銷量與單位仍然服從(Ⅰ)中的關(guān)系,若該商品的成本是每件7.5元,為使商場獲得最大利潤,該商品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入﹣成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com