將直線y=x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,所得到的直線為( )
A.x=0 B.y=0 C.y=x D.y=﹣x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 2.1復(fù)合變換與二階矩陣的乘法(解析版) 題型:填空題
把實(shí)數(shù)a,b,c,d排成如的形式,稱之為二行二列矩陣,定義矩陣的一種運(yùn)算,該運(yùn)算的幾何意義為平面上的點(diǎn)(x,y)在矩陣的作用下變換成點(diǎn)(ax+by,cx+dy),則點(diǎn)(2,3)在矩陣的作用下變換成點(diǎn) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:選擇題
設(shè)=,n∈N*,則n的最小值為( )
A.3 B.6 C.9 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題
已知函數(shù),若將其圖象繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)角后,所得圖象仍是某函數(shù)的圖象,則當(dāng)角θ取最大值θ0時(shí),tanθ0=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題
曲線x2﹣y2=1經(jīng)過伸縮變換T得到曲線﹣=1,那么直線x﹣2y+1=0經(jīng)過伸縮變換T得到的直線方程為( )
A.2x﹣3y+6=0 B.4x﹣6y+1=0 C.3x﹣8y+12=0 D.3x﹣8y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.3平面與圓錐面的截線練習(xí)卷(解析版) 題型:解答題
(2010•順義區(qū)一模)已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為:x0x+y0y=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點(diǎn)P(x0,y0)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題
底面直徑為10的圓柱被與底面成60°的平面所截,截口是一個(gè)橢圓,該橢圓的長軸長 ,短軸長 ,離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題
(2014•咸陽二模)如圖,已知P是圓O外一點(diǎn),PA為 圓O的切線.A為切點(diǎn).割線PBC經(jīng)過圓心O,若PA=3,PC=9,則∠ACP= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題
一條弦分圓周為5:7,則這條弦所對的圓周角為( )
A.75° B.105° C.60°或120° D.75°或105°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com