(2010•順義區(qū)一模)已知橢圓C:,(a>b>0)的兩焦點分別為F1、F2,,離心率.過直線l:上任意一點M,引橢圓C的兩條切線,切點為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點P(x0,y0)處的切線方程為:x0x+y0y=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點P(x0,y0)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點();
(3)當(dāng)點M的縱坐標(biāo)為1時,求△ABM的面積.
(1)見解析;(2)見解析;(3)
【解析】
試題分析:(1)由過圓上一點的切線方程,我們不難類比推斷出過橢圓上一點的切線方程.
(2)由(1)的結(jié)論,我們可以設(shè)出A,B兩點的坐標(biāo),列出切線方程,又由M為直線l:上任意一點,故可知M為兩條切線與l的公共交點,消參后即得答案.
(3)由(2)中結(jié)論,我們可得M點的坐標(biāo),根據(jù)l的方程我們可以計算出AB邊上的高,再由弦長公式計算出AB的長度,代入三角形面積公式即可.
【解析】
(1)類比過圓上一點的切線方程,可合情推理:
過橢圓(a>b>0),上一點P(x0,y0)處的切線方程為.
(2)由,離心率
得,a=3∴b=1
∴橢圓C的方程為:
l的方程為:
設(shè)A(x1,y1),B(x2,y2),M的縱坐標(biāo)為t,即,
由(1)的結(jié)論
∴MA的方程為
又其過點,
∴
同理有
∴點A(x1,y1),B(x2,y2)在直線上;
當(dāng),y=0時,方程恒成立,
∴直線AB過定點
(3)t=1∴消去y得,
∴,x1x2=0,
∴.
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:填空題
(2014•鎮(zhèn)江二模)已知點M(3,﹣1)繞原點按逆時針旋轉(zhuǎn)90°后,且在矩陣A=對應(yīng)的變換作用下,得到點N(3,5),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題
在同一平面直角坐標(biāo)系中,直線x﹣2y=2變成直線2x′﹣y′=4的伸縮變換是 則λ+μ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題
若圓x2+y2=4上每個點的橫坐標(biāo)不變.縱坐標(biāo)縮短為原來的,則所得曲線的方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題
將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得到的直線為( )
A.x=0 B.y=0 C.y=x D.y=﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題
在底面半徑為6的圓柱內(nèi),有兩個半徑也為6的球面,兩球的球心距為13,若作一個平面與兩個球都相切,且與圓柱面相交成一橢圓,則橢圓的長軸長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題
(2003•北京)如圖,已知底面半徑為r的圓柱被一個平面所截,剩下部分母線長的最大值為a,最小值為b,那么圓柱被截后剩下部分的體積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題
(2014•陜西二模)如圖,已知PA是⊙O的切線,A為切點.PC是⊙O的一條割線,交⊙O于B,C兩點,點Q是弦BC的中點.若圓心O在∠APB內(nèi)部,則∠OPQ+∠PAQ的度數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題
在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于( )
A.3.2cm B.3.4cm C.3.6cm D.4.0cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com