5.將函數(shù)f(x)=sin(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象沿x軸向左平移$\frac{π}{8}$個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則φ的值為$\frac{π}{4}$.

分析 利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得$\frac{π}{4}$+φ=kπ+$\frac{π}{2}$,k∈Z,由此可得φ 的值.

解答 解:將函數(shù)f(x)=sin(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象沿x軸向左平移$\frac{π}{8}$個(gè)單位后,
得到y(tǒng)=sin(2x+$\frac{π}{4}$+φ)的圖象,
根據(jù)所得函數(shù)為一個(gè)偶函數(shù),則$\frac{π}{4}$+φ=kπ+$\frac{π}{2}$,k∈Z,即φ=kπ+$\frac{π}{4}$,故可取φ=$\frac{π}{4}$,
故答案為:$\frac{π}{4}$.

點(diǎn)評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在平行四邊形ABCD中,AP⊥BD,垂足為P,且AP=2,則$\overrightarrow{AP}$•$\overrightarrow{AB}$+$\overrightarrow{AP}$•$\overrightarrow{AD}$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A.506B.462C.420D.380

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.正四棱柱的底面邊長為2,側(cè)棱長為3,在此棱柱內(nèi)放入一個(gè)半徑為1的小球,當(dāng)小球在棱柱內(nèi)部自由運(yùn)動時(shí),則在棱柱內(nèi)部小球所不能到達(dá)的空間的體積為24-$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=$\frac{lnx}{x}$的單調(diào)遞減區(qū)間是( 。
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,+∞)C.(e,+∞)D.(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用斜二測畫法得到某平面圖形M的直觀圖是邊長為1的正方形,則平面圖形M的面積為( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱p(x)為q(x)的“底下函數(shù)”.證明:當(dāng)a<1時(shí),f(x)為g(x)的“底下函數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知定義在R上的函數(shù)f(x),f(x)+x•f′(x)<0,若a<b,則一定有( 。
A.af(a)<bf(b)B.af(b)<bf(a)C.af(a)>bf(b)D.af(b)>bf(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸的一個(gè)端點(diǎn)為M(0,1),過橢圓左頂點(diǎn)A的直線l與橢圓的另一交點(diǎn)為B.
(1)求橢圓的方程;
(2)若l與直線x=a交于點(diǎn)P,求$\overrightarrow{OB}$•$\overrightarrow{PO}$的值;
(3)若|AB|=$\frac{4}{3}$,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊答案