10.已知數(shù)列{an}滿足a1=a,a2=b,n≥2時,an+1=an-an-1,Sn為其前n項之和,且S1949=1978,S2013=1960,則S2的值為-18.

分析 利用a1=a,a2=b,n≥2時an+1=an-an-1,通過計算出數(shù)列前幾項的值確定周期,進而計算可得結論.

解答 解:∵a1=a,a2=b,n≥2時,an+1=an-an-1,
∴a3=a2-a1=b-a,
a4=a3-a2=(b-a)-b=-a,
a5=a4-a3=(-a)-(b-a)=-b,
a6=a5-a4=(-b)-(-a)=a-b,
a7=a6-a5=(a-b)-(-b)=a,
a8=a7-a6=a-(a-b)=b,

∴數(shù)列{an}是以6為周期的周期數(shù)列,
又∵1949=6×324+5,2013=6×335+3,
∴S1949=1978=324×[a+b+(b-a)+(-a)+(-b)+(a-b)]+[a+b+(b-a)+(-a)+(-b)]=b-a,
S2013=1960=335×[a+b+(b-a)+(-a)+(-b)+(a-b)]+[a+b+(b-a)]=2b,
解得:a=-998,b=980,
∴S2=a+b=-998+980=-18,
故答案為:-18.

點評 本題考查數(shù)列的通項及前n項和,找出周期是解決本題的關鍵,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知球的半徑和圓柱體的底面半徑都為1且體積相同,則圓柱的高為(  )
A.1B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.按照如下的規(guī)律構造數(shù)表:
第一行是:2;
第二行是:2+1,2+3:即3,5;
第三行是:3+1,3+3,5+1,5+3,即:4,6,6,8,

(即從第二行起將上一行的數(shù)的每一項各加1寫出,再各項再加3寫出),若第n行所有的項的和為an;
2
3 5
4 6 6 8
5 7 7 9 7 9 9 11

(1)求a3,a4,a5;
(2)試寫出an+1與an的遞推關系,并據(jù)此求出數(shù)列{an}的通項公式;
(3)設Sn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+…+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$(n∈N*),求Sn和$\underset{lim}{n→∞}$Sn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D為側棱AA1的中點;
(1)求證:AC⊥平面BCC1B1;
(2)求異面直線B1D與AC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.數(shù)列{an}滿足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式;
(3)設bn=(1-$\frac{1}{{2}^{n}}$)an,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設數(shù)列{an}的前項和為Sn,若$\frac{{S}_{n}}{{S}_{2n}}$為常數(shù),則稱數(shù)列{an}為“精致數(shù)列”.已知等差數(shù)列{bn}的首項為1,公差不為0,若數(shù)列{bn}為“精致數(shù)列”,則數(shù)列{bn}的通項公式為${b_n}=2n-1,(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.選擇適當?shù)姆椒ń庀铝腥切危?br />(1)在△ABC中,b=4,c=13,S△ABC=10,求a;
(2)在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知空間向量$\overrightarrow{a}$=(0,1,-1),$\overrightarrow$=(1,2,3),$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow$,則空間向量$\overrightarrow{c}$的坐標是(-1,1,-6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某市區(qū)甲、乙、丙三所學校的高三文科學生共有800人,其中男、女生人數(shù)如表:
甲校乙校丙校
男生9790x
女生153yz
從這三所學校的所有高三文科學生中隨機抽取1人,抽到乙校高三文科女生豐潤概率為0.2.
(1)求表中x+z的值;
(2)某市四月份模考后,市教研室準備從這三所學校的所有高三文科學生中利用隨機數(shù)表法抽取100人進行成績統(tǒng)計分析.先將800人按001,002,…,800進行編號.如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢測的4個人的編號:(下面摘取了隨機數(shù)表中第7行至第9行)
84421753315724550688770474476721763350268392
63015316591692753862982150717512867358074439
13263321134278641607825207443815032442997931
(3)已知x≥145,z≥145,求丙校高三文科生中的男生比女生人數(shù)多的概率.

查看答案和解析>>

同步練習冊答案