8.在△ABC中,若A=30°,cosB=-$\frac{4}{5}$,b=6,則a=5.

分析 直接利用正弦定理求解即可.

解答 解:在△ABC中,若A=30°,cosB=-$\frac{4}{5}$,b=6,則a=$\frac{bsinA}{sinB}$=$\frac{6×\frac{1}{2}}{\sqrt{1-(-\frac{4}{5})^{2}}}$=5.
故答案為:5.

點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在數(shù)列{an}中,a1=1,an+1•an=an-an+1
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=lg$\frac{{a}_{n+2}}{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.將函數(shù)f(x)=2sin(2x+$\frac{π}{4}$)的圖象向右平移$\frac{π}{6}$,得到函數(shù)g(x)的圖象,則g($\frac{π}{4}$)=( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\frac{\sqrt{6}-\sqrt{2}}{4}$C.$\frac{\sqrt{6}+\sqrt{2}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖所示,已知${∫}_{0}^$f(x)dx=11,${∫}_{0}^$g(x)dx=9,${∫}_{0}^{a}$[g(x)-f(x)]dx=5.則圖中陰影部分的面積為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合M={x|x≥-3},N={x|x≤1},則M∩N=( 。
A.RB.(-∞,-3]∪[1,+∞)C.[-3,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$\overrightarrow{a}$、$\overrightarrow$不平行,且$\overrightarrow{a}$•$\overrightarrow$≠0,且$\overrightarrow{c}$=$\overrightarrow{a}$-($\frac{\overrightarrow{a}•\overrightarrow{a}}{\overrightarrow{a}•\overrightarrow}$)$\overrightarrow$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$夾角為(  )
A.0B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若${({x+\frac{a}{x^2}})^9}$的二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)是84,則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x|x2-3x+2<0},B={x|log4x>$\frac{1}{2}$},則( 。
A.A⊆BB.B⊆AC.A∩∁RB=RD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于直線y=x對(duì)稱(chēng),且z1=3+2i,則z1•z2=( 。
A.12+13iB.13+12iC.-13iD.13i

查看答案和解析>>

同步練習(xí)冊(cè)答案