8.已知命題p:log2x<1解集為{x|x<2},命題q:ln$\frac{1}{2}$<sin$\frac{1}{2}$<$\frac{1}{2}$,則(  )
A.p∨¬q為真B.p∨q為真C.¬p∧¬q為真D.p∧q為真

分析 分別判斷命題p,q的真假,結(jié)合復合命題真假關系進行判斷即可.

解答 解:由log2x<1得0<x<2,即不等式的解集是{x|0<x<2},故p是假命題,
∵ln$\frac{1}{2}$<0,0<$\frac{1}{2}$<$\frac{π}{6}$,
∴0<sin$\frac{1}{2}$<sin$\frac{π}{6}$=$\frac{1}{2}$,
即ln$\frac{1}{2}$<sin$\frac{1}{2}$<$\frac{1}{2}$成立,即q為真命題,
則p∨q為真,其余為假命題,
故選:B

點評 本題主要考查復合命題真假關系的判斷,根據(jù)條件判斷命題p,q的真假是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.設f(x)=ex-ax2,g(x)=kx+1(a∈R,k∈R),e為自然對數(shù)的底數(shù).
(1)若a=1時,直線y=g(x)與曲線y=f′(x)相切(f′(x)為f(x)的導函數(shù)),求k的值;
(2)設h(x)=f(x)-g(x),若h(1)=0,且函數(shù)h(x)在(0,1)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“異駐點”.若函數(shù)g(x)=2016x,h(x)=ln(x+1),φ(x)=x3-1的“異駐點”分別為α,β,γ,則α,β,γ的大小關系為( 。
A.α>β>γB.β>α>γC.β>γ>αD.γ>α>β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-ax,(a∈R)
(Ⅰ)若函數(shù)f(x)在點(1,f(1))處切線方程為y=3x+b,求a,b的值;
(Ⅱ)當a>0時,求函數(shù)f(x)在[1,2]上的最小值;
(Ⅲ)設g(x)=x2-2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=$\sqrt{x-1}$的定義域是( 。
A.(-∞,1]B.(-∞,0]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知(2-x)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,則a3=(  )
A.15B.-15C.20D.-20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)g(x)的圖象與函數(shù)f(x)=log3x(x>0)的圖象關于直線y=x對稱,若g(a)•g(b)=9(其中a>0且b>0),則$\frac{1}{a}$+$\frac{4}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知隨機變量ξ~B(5,$\frac{1}{3}$),隨機變量η=2ξ-1,則E(η)=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設平面α,β,直線a,b,集合A={垂直于α的平面},B={垂直于β的平面},M={垂直于a的直線},N={垂直于b的直線},下列四個命題中
①若A∩B≠∅,則α∥β②若α∥β,則A=B③若a,b異面,則M∩N=∅④若a,b相交,則M=N
不正確的是( 。
A.①②B.③④C.①③④D.②④

查看答案和解析>>

同步練習冊答案