19.定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“異駐點(diǎn)”.若函數(shù)g(x)=2016x,h(x)=ln(x+1),φ(x)=x3-1的“異駐點(diǎn)”分別為α,β,γ,則α,β,γ的大小關(guān)系為( 。
A.α>β>γB.β>α>γC.β>γ>αD.γ>α>β

分析 由題設(shè)中所給的定義,對三個(gè)函數(shù)所對應(yīng)的方程進(jìn)行研究,分別計(jì)算求出α,β,γ的值或存在的大致范圍,再比較出它們的大小即可選出正確選項(xiàng).

解答 解:①∵g(x)=2016x,∴g′(x)=2016,由g(x)=g′(x),解得2016x=2016,∴α=1.
②∵h(yuǎn)(x)=ln(x+1),
∴h′(x)=$\frac{1}{x+1}$,由h(x)=h′(x),得到ln(x+1)=$\frac{1}{x+1}$,
令h(x)=ln(x+1)-$\frac{1}{x+1}$,則h′(x)=$\frac{1}{x+1}$+$\frac{1}{(x+1)^{2}}$,因此函數(shù)h(x)在(-1,+∞)單調(diào)遞增.
∵h(yuǎn)(0)=-1<0,h(1)=ln2-$\frac{1}{2}$>0,∴0<β<1.
③∵φ(x)=x3-1,∴φ′(x)=3x2,由φ(x)=φ′(x),得x3-1=2x2
∵2x2>0,(x=0時(shí)不成立),∴x3-1>0,∴x>1,∴γ>1.
綜上可知:γ>α>β.
故選:D.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則、新定義“新駐點(diǎn)”、對數(shù)函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人有3個(gè)電子郵箱,他要發(fā)5封不同的電子郵件,則不同的發(fā)送方法有(  )
A.8種B.15種C.35D.53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.任取一個(gè)3位正整數(shù)n,則對數(shù)log2n是一個(gè)正整數(shù)的概率為( 。
A.$\frac{1}{300}$B.$\frac{1}{425}$C.$\frac{1}{450}$D.$\frac{1}{128}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)F1、F2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),P在雙曲線上,若$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0,|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2a$\sqrt{{a}^{2}+^{2}}$,則雙曲線的離心率為$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知具有線性相關(guān)關(guān)系的變量y與x之間的一組數(shù)據(jù):
x12345
y24685
若由最小二乘法原理得到回歸方程$\widehat{y}$=$\widehat$x+0.5,則$\widehat$的值為( 。
A.0.5B.1C.1.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=ex-ax(a∈R),e為自然對數(shù)的底數(shù).
(1)若a=1時(shí),求曲線y=f(x)在x=0處的切線方程;
(2)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=8,a3=4.則$\frac{{3{a_n}-{S_n}}}{n}$的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:log2x<1解集為{x|x<2},命題q:ln$\frac{1}{2}$<sin$\frac{1}{2}$<$\frac{1}{2}$,則( 。
A.p∨¬q為真B.p∨q為真C.¬p∧¬q為真D.p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=1+2sinθ}\end{array}\right.$ (θ為參數(shù)),則曲線的直角坐標(biāo)方程為( 。
A.(x-1)2+y2=2B.(x-1)2+y2=4C.x2+(y-1)2=2D.x2+(y-1)2=4

查看答案和解析>>

同步練習(xí)冊答案