已知函數(shù)
(1)求函數(shù)
的單調(diào)增區(qū)間;
(2)若
,求函數(shù)
在[1,e]上的最小值.
(1)
的單調(diào)遞增區(qū)間為
,
的單調(diào)遞增區(qū)間為
;
(2)
.
試題分析:(1)可求得
,結(jié)合函數(shù)的定義域為
,需對a的正負形進行分類討論,從而得到f(x)的單調(diào)區(qū)間;(2)根據(jù)(1)中得到的f(x)的單調(diào)性,可得f(x)在
上單調(diào)遞減,在
上單調(diào)遞增,因此f(x)的最小值即為
.
(1)由題意,
的定義域為
,且
1分
①
的單調(diào)遞增區(qū)間為
4分
② 當
時,令
,得
,∴
的單調(diào)遞增區(qū)間為
7分
(2)由(1)可知,
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分)
已知函數(shù)
,
,且
在點
處的切線方程為
.
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù)
若方程
恰四個不同的解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<
,則f(x)<
+
的解集為( )
A.{x|-1<x<1} | B.{x|x<-1} |
C.{x|x<-1或x>1} | D.{x|x>1} |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)曲線
在點(3,2)處的切線與直線
垂直,則
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,
.
(Ⅰ)若曲線
在點
處的切線與直線
垂直,求
的值;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,當
時,都有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點
在曲線
上,
為曲線在點
處的切線的傾斜角,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線
在點
處的切線方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
直線y = kx與曲線
相切,則實數(shù)k =
.
查看答案和解析>>