【題目】己知點,直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點,且OA⊥OB.
(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長;
(2)若直線l過點(0,2),求l的方程.
【答案】(1);(2).
【解析】
(1)根據(jù)題意,求得直線OB的方程,利用點到直線的距離公式求得圓心到直線OB的距離,之后應(yīng)用圓中的特殊三角形,求得弦長;
(2)根據(jù)題意,可判斷直線的斜率是存在的,設(shè)出其方程,與圓的方程聯(lián)立,得到兩根和與兩根積,根據(jù)OA⊥OB,利用向量數(shù)量積等于零得到所滿足的等量關(guān)系式,求得結(jié)果.
(1)因為直線OA的方程為,,
所以直線OB的方程.
從而圓心到直線OB的距離為:
所以直線OB被團C截得的弦長為:.
(2)依題意,直線l的斜率必存在,不妨設(shè)其為k,則l的方程為,
又設(shè),.
由得,
所以,.
從而.
所以.
因為,所以,即,解得.
所以l的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以直角坐標(biāo)系的原點為極點,以軸的正半軸為極軸建立坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的直角坐標(biāo)方程(化為標(biāo)準方程)及曲線的普通方程;
(2)若圓與曲線的公共弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于無窮數(shù)列,給出下列命題:
①若數(shù)列既是等差數(shù)列,又是等比數(shù)列,則數(shù)列是常數(shù)列.
②若等差數(shù)列滿足,則數(shù)列是常數(shù)列.
③若等比數(shù)列滿足,則數(shù)列是常數(shù)列.
④若各項為正數(shù)的等比數(shù)列滿足,則數(shù)列是常數(shù)列.
其中正確的命題個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車已成為一種時髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對,兩個品牌的共享單車在編號分別為1,2,3,4,5的五個城市的用戶人數(shù)(單位:十萬)進行統(tǒng)計,得到數(shù)據(jù)如下:
城市品牌 | 1 | 2 | 3 | 4 | 5 |
品牌 | 3 | 4 | 12 | 6 | 8 |
品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享單車用戶人數(shù)超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有的把握認為“優(yōu)城”和共享單車品牌有關(guān)?
(Ⅱ)若不考慮其它因素,為了拓展市場,對品牌要從這五個城市選擇三個城市進行宣傳.
(i)求城市2被選中的概率;
(ii)求在城市2被選中的條件下城市3也被選中的概率.
附:參考公式及數(shù)據(jù)
0.15 | 0.10 | 0.05 | 0.025 | 0.005 | 0.001 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)在處的切線方程;
(2)當(dāng)時,函數(shù)有兩個極值點,求的取值范圍;
(3)若在點處的切線與軸平行,且函數(shù)在時,其圖象上每一點處切線的傾斜角均為銳角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)直線的方程為.若直線在兩坐標(biāo)軸上的截距相等,求直線的方程;
(2)過直線:上的點作直線,若直線,與軸圍成的三角形的面積為2,則直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com