【題目】已知函數(shù),且函數(shù)為偶函數(shù)。

1)求的解析式;

2)若方程有三個不同的實數(shù)根,求實數(shù)m的取值范圍。

【答案】(1);(2)

【解析】

(1)利用是偶函數(shù)得到關于對稱,從而,解得a進而得到解析式.

2)問題轉(zhuǎn)化為方程有三個不同實數(shù)根,令,對求導,研究單調(diào)性及極值,得到大致圖像,由圖可得m的范圍.

(1)由題可知所以函數(shù)的對稱軸為,

由于是偶函數(shù),

所以,即關于對稱

所以,即

所以

(2)方程有三個不同的實數(shù)根,即方程有三個不同實數(shù)根.

,由(1)有,

所以,令,則

時,;當時,;當時,

故當時,單調(diào)遞增;當時,單調(diào)遞減;當時,單調(diào)遞增.

所以,當時,取得極大值;當時,取得極小值,

又由于≥0,且當時,;當時,

其大致圖像:

所以,方程有三個不同實數(shù)根時,m的范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,側棱PD⊥底面ABCD,PDDC,點EPC的中點,作EFPBPB于點F.

1)求證:PA∥平面BDE

2)求證:PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)

(3) 從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,則平面PQC與平面DCQ的位置關系為(  )

A. 平行 B. 垂直

C. 相交但不垂直 D. 位置關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為,其中.

(1)當時,寫出函數(shù)的單調(diào)區(qū)間(不要求證明);

(2)若對于任意的,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C1x2+y2=1與圓C2x2+y26x+m=0

1)若圓C1與圓C2外切,求實數(shù)m的值;

2)在(1)的條件下,若直線x+2y+n=0與圓C2的相交弦長為2,求實數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點作直線交拋物線于兩點,若,則的值為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根據(jù)過拋物線焦點的弦長公式,利用題目所給已知條件,求得弦長.

根據(jù)過拋物線焦點的弦長公式有.故選B.

【點睛】

本小題主要考查過拋物線焦點的弦長公式,即.要注意只有過拋物線焦點的弦長才可以使用.屬于基礎題.

型】單選題
束】
10

【題目】已知橢圓: 的右頂點、上頂點分別為,坐標原點到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其圖象關于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點( )

A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變

B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變

C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變

D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P到直線y=﹣4的距離比點P到點A01)的距離多3

(1)求點P的軌跡方程;

(2)經(jīng)過點Q0,2)的動直線l與點P的軌交于M,N兩點,是否存在定點R使得∠MRQ=∠NRQ?若存在,求出點R的坐標:若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案