【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

【答案】(1)tanθ=-;(2)θ=.

【解析】

(1)利用兩個(gè)向量垂直的坐標(biāo)表示,列出方程,化簡可求得的值.(2)利用兩個(gè)向量平行的坐標(biāo)表示,列出方程,化簡可求得的值.

(1)依題意,得:=0,即

sin(θ+)+2sinθ=0,展開,得:

sinθcos+cosθsin+2sinθ=0,

化簡,得:sinθ+cosθ=0,解得:tanθ=-

(2)因?yàn)?/span>,所以,2sinθsin(θ+)=1,展開得:

2sinθ(sinθcos+cosθsin)=1,

即:2sin2θ+2sinθcosθ=2,

即:1-cos2θ+sin2θ=2,

化為:sin(2θ-)=,因?yàn)棣?/span> (0,),所以,2θ- (),

所以,2θ-,解得:θ=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)已知,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】峰谷電是目前在城市居民當(dāng)中開展的一種電價(jià)類別.它是將一天24小時(shí)劃分成兩個(gè)時(shí)間段,把8:00—22:00共14小時(shí)稱為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào);22:00—次日8:00共10個(gè)小時(shí)稱為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對峰谷電價(jià)的使用情況,從某市一小區(qū)隨機(jī)抽取了50 戶住戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以,,,,(單位:度)分組的頻率分布直方圖如下圖:

若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價(jià)的戶數(shù)如下表:

月平均用電量(度)

使用峰谷電價(jià)的戶數(shù)

3

9

13

7

2

1

(1)估計(jì)所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:

一般用戶

大用戶

使用峰谷電價(jià)的用戶

不使用峰谷電價(jià)的用戶

()根據(jù)()中的列聯(lián)表,能否有的把握認(rèn)為 “用電量的高低”與“使用峰谷電價(jià)”有關(guān)?

0.025

0.010

0.001

5.024

6.635

10.828

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)為宣傳本市,隨機(jī)對本市內(nèi)歲的人群抽取了人,回答問題本市內(nèi)著名旅游景點(diǎn)有哪些,統(tǒng)計(jì)結(jié)果如圖表所示.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

1

[15,25)

a

0.5

2

[25,35)

18

x

3

[35,45)

b

0.9

4

[45,55)

9

0.36

5

[55,65]

3

y

(1)分別求出的值;

(2)根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點(diǎn)后兩位)和平均數(shù);

(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機(jī)抽取2人,求至少抽中1名女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面,

)求證: 平面

)求二面角的余弦值.

)在線段(含端點(diǎn))上,是否存在一點(diǎn),使得平面,若存在,求出的值;若不存在,請說明理由.

【答案】)見解析;;)存在,

【解析】試題分析:(1由題意,證明, ,證明;(2)建立空間直角坐標(biāo)系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, 所以存在中點(diǎn).

試題解析:

,

,,

,且,

、,

)知,

, 兩兩垂直,以為坐標(biāo)原點(diǎn),

, , 軸建系.

設(shè),則 , , ,

設(shè)的一個(gè)法向量為,

,取,則

由于是面的法向量,

∵二面角為銳二面角,∴余弦值為

)存在點(diǎn)

設(shè) ,

, , ,

,

,,

,

,∴,∴存在中點(diǎn).

型】解答
結(jié)束】
19

【題目】已知函數(shù)

)當(dāng)時(shí),求此函數(shù)對應(yīng)的曲線在處的切線方程.

)求函數(shù)的單調(diào)區(qū)間.

)對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的值;

2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn),焦距為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于不同的兩點(diǎn)、,線段的垂直平分線交軸交于點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且當(dāng)時(shí),..給出下列關(guān)于函數(shù)的說法:①當(dāng)時(shí),;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.

查看答案和解析>>

同步練習(xí)冊答案