5.定義在(0,+∞)上的單調(diào)函數(shù)f(x),對(duì)任意x∈(0,+∞),f[f(x)-log2x]=3成立,若方程f(x)-f'(x)=2的解在區(qū)間(k,k+1)(k∈Z)內(nèi),則k=1.

分析 設(shè)t=f(x)-log2x,則f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零點(diǎn)所在的區(qū)間為(1,2),結(jié)合函數(shù)的零點(diǎn)與方程的根的關(guān)系,即可得答案.

解答 解:根據(jù)題意,對(duì)任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-log2x為定值,
設(shè)t=f(x)-log2x,則f(x)=log2x+t,
又由f(t)=3,即log2t+t=3,
解可得,t=2;
則f(x)=log2x+2,f′(x)=$\frac{1}{ln2•x}$,
將f(x)=log2x+2,f′(x)=$\frac{1}{xln2}$代入f(x)-f′(x)=2,
可得log2x+2-$\frac{1}{xln2}$=2,
即log2x-$\frac{1}{xln2}$=0,
令h(x)=log2x-$\frac{1}{xln2}$,
分析易得h(1)=$\frac{1}{ln2}$<0,h(2)=1-$\frac{1}{2ln2}$>0,
則h(x)=log2x-$\frac{1}{xln2}$的零點(diǎn)在(1,2)之間,
則方程log2x-$\frac{1}{xln2}$=0,即f(x)-f′(x)=2的根在(1,2)上,
故答案為:1.

點(diǎn)評(píng) 本題考查二分法求函數(shù)的零點(diǎn)與函數(shù)零點(diǎn)與方程根的關(guān)系的應(yīng)用,關(guān)鍵點(diǎn)和難點(diǎn)是求出f(x)的解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.$\root{3}{(lg50-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=(  )
A.2lg5B.0C.-1D.-2lg5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$,則f(x)(  )
A.圖象關(guān)于$x=\frac{π}{3}$對(duì)稱
B.圖象關(guān)于$(\frac{2π}{3},0)$對(duì)稱
C.在$[\frac{2π}{3},\frac{8π}{3}]$上單調(diào)遞減
D.單調(diào)遞增區(qū)間是$[2kπ-\frac{4π}{3},2kπ+\frac{2π}{3}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知i為虛數(shù)單位,則$\frac{1-i}{i^3}$=( 。
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,e為雙曲線的離心率,P是雙曲線右支上的點(diǎn),△PF1F2的內(nèi)切圓的圓心為I,過(guò)F2作直線PI的垂線,垂足為B,則OB=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系中,已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,4)
(1)求sinα和cosα的值;
(2)求$tan(α+\frac{π}{4})$的值;
(3)求${sin^2}(α+\frac{π}{4})+sin(α+\frac{π}{4})•cos(α+\frac{π}{4})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的圖象如圖所示.
(1)根據(jù)圖象寫(xiě)出f(x)的解析式;
(2)A為銳角三角形的一個(gè)內(nèi)角,求f(A)的最大值,及當(dāng)f(A)取最大值時(shí)A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,則x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.兩條直線l1:ax+(1+a)y=3,l2:(a+1)x+(3-2a)y=2互相垂直,則a的值是 ( 。
A.3B.-1C.-1或3D.0 或 3

查看答案和解析>>

同步練習(xí)冊(cè)答案