分析 利用切線長(zhǎng)定理,再利用雙曲線的定義,把|PF1|-|PF2|=2a,轉(zhuǎn)化為|AF1|-|AF2|=2a,從而求得點(diǎn)H的橫坐標(biāo).再在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,從而在三角形F1CF2中,利用中位線定理得出OB,從而解決問題.
解答 解:由題意知:F1(-c,0)、F2(c,0),內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)A,
∵|PF1|-|PF2|=2a,及圓的切線長(zhǎng)定理知,
|AF1|-|AF2|=2a,設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,
則|(x+c)-(c-x)|=2a,
∴x=a.
在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,PC=PF2,
∴在三角形F1CF2中,有:
OB=$\frac{1}{2}$CF1=$\frac{1}{2}$(PF1-PC)=$\frac{1}{2}$(PF1-PF2)=$\frac{1}{2}$×2a=a.
故答案為:a.
點(diǎn)評(píng) 本題考查雙曲線的定義、切線長(zhǎng)定理.解答的關(guān)鍵是充分利用三角形內(nèi)心的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (-2,0) | C. | (-2,0] | D. | (-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{17}{9},+∞})$ | B. | $({\frac{17}{9},+∞})$ | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{7}$ | B. | $\sqrt{10}$ | C. | 4 | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com