A. | $\frac{{x}^{2}}{9}$+y2=1 | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{81}$=1 | ||
C. | $\frac{{x}^{2}}{9}$+y2=1或$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{81}$=1 | D. | $\frac{{x}^{2}}{9}$+y2=1或$\frac{{x}^{2}}{81}$+$\frac{{y}^{2}}{9}$=1 |
分析 由題意分橢圓焦點在x軸或y軸分類設出橢圓的標準方程,并得到a(或b)的值,結合已知條件即可求得答案.
解答 解:當橢圓焦點在x軸上時,設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$,
則a=3,又$\frac{c}{a}=\frac{2\sqrt{2}}{3}$,得c=2$\sqrt{2}$,
∴b2=a2-c2=1,橢圓方程為$\frac{{x}^{2}}{9}+{y}^{2}=1$;
當橢圓焦點在y軸上時,設橢圓方程為$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),
則b=3,又$\frac{c}{a}=\frac{2\sqrt{2}}{3}$,a2=b2+c2,聯(lián)立解得a2=81,b2=9,橢圓方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}=1$.
∴橢圓的標準方程為$\frac{{x}^{2}}{9}$+y2=1或$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{81}$=1.
故選:C.
點評 本題考查橢圓的標準方程,體現(xiàn)了分類討論的數(shù)學思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\frac{-1}{x}$ | B. | y=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$ | C. | y=ex+e-x | D. | y=-x|x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com