分析 (1)由MN∥BC∥AD即可得出MN∥AD,從而得出結(jié)論;
(2)連接BD,由PD=BD=2$\sqrt{2}$得出N到平面ABCD的距離為h=$\sqrt{2}$,則VC-BDN=VN-BCD=$\frac{1}{3}{S}_{△BCD}•h$.
解答 證明:(1)∵M(jìn),N是PB,PC的中點(diǎn),
∴MN∥BC,又BC∥AD,
∴MN∥AD,又MN?平面PAD,AD?平面PAD,
∴MN∥平面PAD.
(2)連接BD,則BD=2$\sqrt{2}$,
∵PD⊥底面ABCD,
∴∠PBD為PB與平面ABCD所成的角,
∴∠PBD=45°,
∴PD=BD=2$\sqrt{2}$,
∵N為PC的中點(diǎn),
∴N到平面ABCD的距離h=$\frac{1}{2}$PD=$\sqrt{2}$,
∴VC-BDN=VN-BCD=$\frac{1}{3}{S}_{△BCD}•h$=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{2}$=$\frac{2\sqrt{2}}{3}$.
點(diǎn)評 本題考查了線面平行的判定定理,棱錐的體積計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正方體的體積棱長 | B. | 勻速行駛的汽車的行駛距離與時(shí)間 | ||
C. | 人的身高與體重 | D. | 人的身高與視力 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com