【題目】已知拋物線E焦點F,過點F且斜率為2的直線與拋物線交于A、B兩點,且

(1)求拋物線E的方程;

(2)設(shè)O是坐標原點,PQ是拋物線E上分別位于x軸兩側(cè)的兩個動點,且

①證明:直線PQ必過定點,并求出定點G的坐標;

②過GPQ的垂線交拋物線于C,D兩點,求四邊形PCQD面積的最小值.

【答案】1;(2)①見解析,②88

【解析】

(1) 設(shè)直線:,聯(lián)立:,利用焦半徑公式可得的值,進而可得拋物線E的方程;

(2) ①設(shè)直線PQ聯(lián)立:得:,利用條件和韋達定理,可得的值,進而可得定點G的坐標;②求出,進而表示出四邊形PCQD面積,利用換元法可求得最小值.

解:(1) 設(shè)直線:,聯(lián)立:,得:,

p = 2,

∴拋物線方程為:;

(2) ①設(shè)直線PQ

聯(lián)立:得:,

,

,

(舍),

同理

,

設(shè),∴,

遞增,

∴當t = 2時,即時,∴

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y22x4y+m0.

1)若圓C與直線lx+2y40相交于M、N兩點,且|MN|,求m的值;

2)在(1)成立的條件下,過點P2,1)引圓的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是雙曲線 的兩個焦點,上一點,若,是△的最小內(nèi)角,且,則雙曲線的漸近線方程是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若上單調(diào)遞增,求的取值范圍;

(2)若有兩個極值點,,,證明:(i);(ii).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:

捕魚量(單位:噸)

頻數(shù)

2

7

7

3

1

根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):

晴好天氣(單位:天)

頻數(shù)

2

7

6

3

2

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船一天的捕魚量的平均數(shù);

(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.

①估計一艘上述噸位的捕魚船一年在捕魚期內(nèi)的捕魚總量;

②已知當?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時,每天成本為10萬元/艘;若不捕魚,每天成本為2萬元/艘,請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),估計一艘此種捕魚船年利潤不少于1600萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的漸近線方程為,一個焦點為

1)求雙曲線的方程;

2)過雙曲線上的任意一點,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形,證明四邊形的面積是一個定值;

3)設(shè)直線在第一象限內(nèi)與漸近線所圍成的三角形繞著軸旋轉(zhuǎn)一周所得幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,為橢圓的左、右焦點,過右焦點的直線與橢圓交于兩點,且的周長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點A是第一象限內(nèi)橢圓上一點,且在軸上的正投影為右焦點,過點作直線分別交橢圓于兩點,當直線的傾斜角互補時,試問:直線的斜率是否為定值;若是,請求出其定值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求函數(shù)的極小值;

(Ⅱ)當時,討論的單調(diào)性;

(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案