【題目】有一個同學家開了一個小賣部,他為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當天氣溫的對比表:

攝氏溫度/

-5

0

4

7

12

15

19

23

27

31

36

熱飲杯數(shù)

156

150

132

128

130

116

104

89

93

76

54

(1)畫出散點圖;

(2)從散點圖中發(fā)現(xiàn)氣溫與熱飲銷售杯數(shù)之間關系的一般規(guī)律;

(3)求回歸方程;

(4)如果某天的氣溫是,預測這天賣出的熱飲杯數(shù).

【答案】(1)解析見散點圖;(2)氣溫與熱飲銷售杯數(shù)之間呈負相關,即氣溫越高,賣出去的熱飲杯數(shù)越少;(3) ;(4).

【解析】試題分析:(1根據(jù)數(shù)據(jù),畫出散點圖;(2觀察得到氣溫與熱飲銷售杯數(shù)之間呈負相關,即氣溫越高,賣出去的熱飲杯數(shù)越少;(3)利用回歸方程的公式求出回歸系數(shù),,得到回歸方程;(4)當x=2時, =143.063.因此某天的氣溫為2 ,這天大約可以賣出143杯熱飲.

試題解析:

(1)散點圖如圖所示:

(2)從上圖看到,各點散布在從左上角到右下角的區(qū)域里因此,氣溫與熱飲銷售杯數(shù)之間呈負相關即氣溫越高,賣出去的熱飲杯數(shù)越少.

(3)從散點圖可以看出這些點大致分布在一條直線的附近,因此,可用公式求出回歸方程的系數(shù).利用計算器容易求得回歸方程=-2.352x147.767.

(4)當x=2時, =143.063.因此某天的氣溫為2 ,這天大約可以賣出143杯熱飲.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱形與正三角形的邊長均為2,它們所在平面互相垂直, ,且

1)求證:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l經(jīng)過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.

(1)求直線l的方程.

(2)若點P(a,1)到直線l的距離為,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種牙膏新品種時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為012,34,5的六種添加劑可供選用.根據(jù)試驗設計原理,通常首先要隨機選取兩種不同的添加劑進行搭配試驗.(寫解題過程)

1)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;

2)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點的零件的多少隨機器的運轉的速度的變化而變化,下表為抽樣試驗的結果:

轉速/(轉/秒)

16

14

12

8

每小時生產有缺點的零件數(shù)/件

11

9

8

5

(1)畫出散點圖;

(2)如果有線性相關關系,請畫出一條直線近似地表示這種線性關系;

(3)在實際生產中,若它們的近似方程為,允許每小時生產的產品中有缺點的零件最多為件,那么機器的運轉速度應控制在什么范圍內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線過點.

(1)若直線與曲線交于兩點,求的值;

(2)求曲線的內接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設人的某一特征(如眼睛的大小)是由他的一對基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個基因,假定父母都是混合性,:

(1)1個孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個孩子中至少有1個顯露顯性特征”,這種說法正確嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x-+a(2-ln x)(a>0),求函數(shù)f(x)的單調區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設O為△ABC的外心,已知AB=3,AC=4,非零實數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

同步練習冊答案