已知a1=1,an+1=
an
an+1
,求an
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列的遞推關(guān)系,利用取倒數(shù)法,結(jié)合等差數(shù)列的通項公式進行求解即可.
解答: 解:∵a1=1,an+1=
an
an+1
,
∴兩邊取倒數(shù)得
1
an+1
=
an+1
an
=
1
an
+1,
1
an+1
-
1
an
=1,
則數(shù)列{
1
an
}是公差d=1的等差數(shù)列,首項為
1
a1
=1
,
1
an
=1+n-1=n,
故an=
1
n
點評:本題主要考查數(shù)列的通項公式的求解,根據(jù)數(shù)列的遞推關(guān)系,利用取倒數(shù)法,結(jié)合等差數(shù)列的通項公式是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,則
i
1-i
=( 。
A、
1
2
+
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察:52-1=25,72-1=48,112-1=120,132-1=168,…,所得的結(jié)果都是24的倍數(shù),繼續(xù)實驗,你能得到什么猜想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:存在a∈R,曲線x2+ay2=1為雙曲線;命題q:
x-1
x-2
≤0的解集是{x|1<x<2}.給出下列結(jié)論中正確的有(  )
①命題“p且q”是真命題;      ②命題“p且(?q)”是真命題;
③命題“(?p)或q”為真命題; ④命題“(?p)或(?q)”是真命題.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
是單位向量,
a
b
=0.若向量
c
滿足|
c
-
a
+
b
|=2,則|
c
|的最大值為( 。
A、
2
-1
B、2-
2
C、
2
+1
D、
2
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直徑為1的圓O中,作一關(guān)于圓心對稱、鄰邊互相垂直的十字形,其中y>x>0.
(1)將十字形的面積表示為θ的函數(shù);
(2)十字形的最大面積是多少?并求出十字形取得最大值時,tanθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)x,y滿足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,若z=y+ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若對任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,則稱函數(shù)f(x)為函數(shù)f1(x)到函數(shù)f2(x)在區(qū)間D上的“折中函數(shù)”.已知函數(shù)f(x)=(k-1)x-1,g(x)=0,h(x)=(x+1)lnx,且f(x)是g(x)到h(x)在區(qū)間[1,2e]上的“折中函數(shù)”,則實數(shù)k的值構(gòu)成的集合是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠C=2∠A,a+c=10,cosA=
3
4
,求b.

查看答案和解析>>

同步練習冊答案