18.一條光線(xiàn)從點(diǎn)A(-4,0)射入,與直線(xiàn)y=3相交于點(diǎn)B(-1,3),經(jīng)直線(xiàn)y=3反射后過(guò)點(diǎn)C(m,-1),直線(xiàn)l過(guò)點(diǎn)C且分別與x軸和y軸的負(fù)半軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),則當(dāng)△OPQ的面積最小時(shí)直線(xiàn)l的方程為(  )
A.$\frac{x}{4}$-$\frac{y}{4}$=1B.$\frac{x}{2}$-$\frac{y}{6}$=1C.$\frac{x}{6}$-$\frac{y}{2}$=1D.$\frac{x}{12}$-$\frac{3y}{4}$=1

分析 求出C的坐標(biāo),利用基本不等式,即可求出當(dāng)△OPQ的面積最小時(shí)直線(xiàn)l的方程.

解答 解:直線(xiàn)AB的斜率為1,則反射光線(xiàn)所在的直線(xiàn)方程為y-3=-(x+1),
代入點(diǎn)C得m=3,即C(3,-1).
設(shè)直線(xiàn)l的方程為$\frac{x}{a}+\frac{y}$=1(a>0,b<0),則S△OPQ=$\frac{1}{2}ab$,且$\frac{3}{a}+\frac{1}{-b}$=1≥2$\sqrt{\frac{3}{-ab}}$,即有-ab≥12,
當(dāng)且僅當(dāng)$\frac{3}{a}=\frac{1}{-b}$,即a=6,b=-2等號(hào)成立,此時(shí)S△OPQ取最小值6,直線(xiàn)l的方程為$\frac{x}{6}-\frac{y}{2}$=1
故選:C.

點(diǎn)評(píng) 考查用截距式求直線(xiàn)方程的方法,基本不等式的應(yīng)用,正確運(yùn)用基本不等式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合A={x|x2+x-2≤0},B={x|0≤x≤4},則A∩B=(  )
A.[-2,4]B.[0,1]C.[-2,0]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(4-a)x,x<1}\\{{a}^{x},x≥1}\end{array}\right.$滿(mǎn)足對(duì)任意的兩個(gè)不等實(shí)數(shù)x1,x2都有(x1-x2)[f(x1)-f(x2)]>0成立,則實(shí)數(shù)a的取值范圍是(  )
A.(1,+∞)B.(-∞,4)C.(1,4)D.[2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=6,求
(1)($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在多面體ABCDEF中,四邊形ABCD為矩形,△ADE,△BCF均為等邊三角形,EF∥AB,EF=AD=$\frac{1}{2}$AB,N為線(xiàn)段PC的中點(diǎn).
(1)求證:AF∥平面BDN;
(2)求直線(xiàn)BN與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|log2(x2-3x)<2},B={x|$\frac{x+3}{2-x}$≥0},則A∩B=( 。
A.(-1,0)B.(-1,2)C.(-1,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=a(x+$\frac{x}$)+blnx(其中a,b∈R)
(Ⅰ)當(dāng)b=-4時(shí),若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)a=-1時(shí),是否存在實(shí)數(shù)b,使得當(dāng)x∈[e,e2]時(shí),不等式f(x)>0恒成立,如果存在,求b的取值范圍,如果不存在,說(shuō)明理由(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知數(shù)列{an}為等差數(shù)列,a1+a2+a3=3,a5+a6+a7=9,則a10=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.化簡(jiǎn)${[{(-\frac{1}{27})^{-2}}]^{\frac{1}{3}}}+{log_2}5-{log_2}10$的值得( 。
A.8B.10C.-8D.-10

查看答案和解析>>

同步練習(xí)冊(cè)答案