9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(4-a)x,x<1}\\{{a}^{x},x≥1}\end{array}\right.$滿足對任意的兩個不等實(shí)數(shù)x1,x2都有(x1-x2)[f(x1)-f(x2)]>0成立,則實(shí)數(shù)a的取值范圍是(  )
A.(1,+∞)B.(-∞,4)C.(1,4)D.[2,4)

分析 由任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,得函數(shù)為增函數(shù),根據(jù)分段函數(shù)單調(diào)性的性質(zhì)建立不等式關(guān)系即可.

解答 解:∵f(x)滿足對任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立
∴函數(shù)f(x)在定義域上為增函數(shù),
則滿足$\left\{\begin{array}{l}{4-a>0}\\{a>1}\\{a≥4-a}\end{array}\right.$,即得2≤a<4,
故選:D.

點(diǎn)評 本題主要考查分段函數(shù)單調(diào)性的應(yīng)用,根據(jù)條件判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虛數(shù)單位,則|a+bi|=( 。
A.-1-3iB.$\sqrt{5}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=$\frac{1-x}{ax}$+lnx是[1,+∞)上的增函數(shù).
(Ⅰ)求正實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=x2+2x,在使g(x)≥M對定義域內(nèi)的任意x值恒成立的所有常數(shù)M中,我們把M的最大值M=-1叫做f(x)=x2+2x的下確界,若函數(shù)f(x)=$\frac{1-x}{ax}$+lnx的定義域?yàn)閇1,+∞),根據(jù)所給函數(shù)g(x)的下確界的定義,求出當(dāng)a=1時函數(shù)f(x)的下確界.
(Ⅲ)設(shè)b>0,a>1,求證:ln$\frac{a+b}$>$\frac{1}{a+b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線x=-8y2的焦點(diǎn)坐標(biāo)是( 。
A.(-$\frac{1}{32}$,0)B.(-2,0)C.($\frac{1}{32}$,0)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“a>1”是“函數(shù)f(x)=(a2x在定義域內(nèi)是增函數(shù)”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)為奇函數(shù),當(dāng)x>0時,f(x)=x2-6x+5,則當(dāng)x<0時,f(x)=-x2-6x-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線C的方程為x2-15y2=15.其漸近線方程為y=±$\frac{\sqrt{15}}{15}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一條光線從點(diǎn)A(-4,0)射入,與直線y=3相交于點(diǎn)B(-1,3),經(jīng)直線y=3反射后過點(diǎn)C(m,-1),直線l過點(diǎn)C且分別與x軸和y軸的負(fù)半軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),則當(dāng)△OPQ的面積最小時直線l的方程為( 。
A.$\frac{x}{4}$-$\frac{y}{4}$=1B.$\frac{x}{2}$-$\frac{y}{6}$=1C.$\frac{x}{6}$-$\frac{y}{2}$=1D.$\frac{x}{12}$-$\frac{3y}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知{an}為等差數(shù)列,a1+a3+a5=156,a2+a4+a6=147,{an}的前n項和為Sn,則使得Sn達(dá)到最大值時n是( 。
A.19B.20C.21D.22

查看答案和解析>>

同步練習(xí)冊答案