分析 (1)以A為原點(diǎn),AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AC與PB所成的角的余弦值.
(2)求出平面AMC的法向量,由此利用向量法能求出PC與平面AMC所成角的正弦值.
解答 解:(1)以A為原點(diǎn),AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,
A(0,0,0),C($\frac{1}{2}$,$\frac{1}{2}$,0),P(0,0,$\frac{1}{2}$),B(0,1,0),
$\overrightarrow{AC}$=($\frac{1}{2}$,$\frac{1}{2}$,0),$\overrightarrow{PB}$=(0,1,-$\frac{1}{2}$),
設(shè)AC與PB所成的角為θ,
則cosθ=$\frac{|\overrightarrow{AC}•\overrightarrow{PB}|}{|\overrightarrow{AC}|•|\overrightarrow{PB}|}$=$\frac{|\frac{1}{2}|}{\sqrt{\frac{1}{2}}•\sqrt{\frac{5}{4}}}$=$\frac{\sqrt{10}}{5}$.
∴AC與PB所成的角的余弦值為$\frac{{\sqrt{10}}}{5}$….(6分)
(2)M(0,$\frac{1}{2},\frac{1}{4}$),$\overrightarrow{PC}$=($\frac{1}{2},\frac{1}{2},-\frac{1}{2}$),$\overrightarrow{AM}$=(0,$\frac{1}{2},\frac{1}{4}$),$\overrightarrow{AC}$=($\frac{1}{2},\frac{1}{2},0$),
設(shè)平面AMC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AM}=\frac{1}{2}y+\frac{1}{4}z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=\frac{1}{2}x+\frac{1}{2}y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
設(shè)PC與平面AMC所成角為α,
則sinα=$\frac{|\overrightarrow{PC}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{|-1|}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$,
∴PC與平面AMC所成角的正弦值為$\frac{\sqrt{6}}{6}$.….(12分)
點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,考查線面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$或$\sqrt{2}$ | D. | -2$\sqrt{2}$或2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x<3} | B. | {x|1<x≤3} | C. | {x|-1≤x<2} | D. | {x|x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 32 | B. | 36 | C. | 48 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 22 | C. | 24 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com