精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)對于函數,若存在,使成立,則稱的不動點。如果函數有且僅有兩個不動點、,且

 

。

 

(1)試求函數的單調區(qū)間;

(2)已知各項均為負的數列滿足,求證:;

 

(3)設,為數列的前項和,求證:。

 

 

【答案】

(1)設

 

     ∴     ∴

 

 

又∵    ∴     ∴    …… 3分 

 

于是

 

;   由

故函數的單調遞增區(qū)間為,

單調減區(qū)間為                       ……4分

(2)由已知可得,     當時,

兩式相減得

時,,若,則這與矛盾

     ∴                       ……6分

于是,待證不等式即為。為此,我們考慮證明不等式

 

 

再令,     由

 

∴當時,單調遞增    ∴   于是

        ①

 

,    由

 

∴當時,單調遞增    ∴   于是

 

     ②

 

由①、②可知                  ……10分

 

所以,,即         ……11分

 

(3)由(2)可知   則

 

中令n=1,2,3…………..2010并將各式相加得

 

 

    

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案