【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).

(1)若A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過(guò)C、D兩點(diǎn),求該橢圓的方程;
(2)若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過(guò)C、D兩點(diǎn),求雙曲線的方程.

【答案】
(1)解:∵A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過(guò)C、D兩點(diǎn),

根據(jù)橢圓的定義:丨CA丨+丨CB丨=16=2a,

∴a=8,…4分

在橢圓中:b2=a2﹣c2=64﹣16=48,

∴橢圓方程為: ;


(2)解:∵A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過(guò)C、D兩點(diǎn),

根據(jù)雙曲線的定義:丨CA丨﹣丨CB丨=4=2a′,

∴a′=2,…10分

在雙曲線中:b2=c2﹣a′2=16﹣4=12,

∴雙曲線方程為:


【解析】(1)由橢圓的定義:丨CA丨+丨CB丨=16=2a,求得a=8,則b2=a2﹣c2=64﹣16=48,即可求得橢圓方程;(2)根據(jù)雙曲線的定義:丨CA丨﹣丨CB丨=4=2a′,則求得a′=2,則b2=c2﹣a′2=16﹣4=12,即可求得雙曲線的標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4一4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;

(2)已知點(diǎn)的極坐標(biāo)分別為,直線與曲線相交于兩點(diǎn),射線

與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.

(1)求證:平面平面

(2)若,且三棱錐的體積為,求側(cè)面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面多邊形中,四邊形為正方形, , ,沿著將圖形折成圖2,其中, , 的中點(diǎn).

(1)求證:

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程為 ,點(diǎn)A、B分別為其左、右頂點(diǎn),點(diǎn)F1、F2分別為其左、右焦點(diǎn),以點(diǎn)A為圓心,AF1為半徑作圓A;以點(diǎn)B為圓心,OB為半徑作圓B;若直線 被圓A和圓B截得的弦長(zhǎng)之比為 ;

(1)求橢圓C的離心率;
(2)己知a=7,問(wèn)是否存在點(diǎn)P,使得過(guò)P點(diǎn)有無(wú)數(shù)條直線被圓A和圓B截得的弦長(zhǎng)之比為 ;若存在,請(qǐng)求出所有的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求曲線處的切線方程;

2)若對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系, 為坐標(biāo)原點(diǎn),曲線 為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,有相同單位長(zhǎng)度的極坐標(biāo)系中,直線 .

(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;

()求與直線平行且與曲線相切的直線的直角坐標(biāo)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈ 時(shí),f(x)的最小值是﹣4,求此時(shí)函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,B=60°,AC= ,則AB+2BC的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案