分析 用數(shù)學(xué)歸納法證明整除問題時(shí)分為兩個(gè)步驟,第一步,先證明當(dāng)n=1時(shí),結(jié)論顯然成立,第二步,先假設(shè)假設(shè)當(dāng)n=k時(shí)結(jié)論成立,利用此假設(shè)結(jié)合因式的配湊法,證明當(dāng)n=k+1時(shí),結(jié)論也成立即可
解答 證明:①當(dāng)n=1時(shí),62×1-1+1=6+1=7,能被7整除;
②假設(shè)當(dāng)n=k時(shí),即62k-1+1(k∈N•)能被7整除,
那么當(dāng)n=k+1時(shí):62(k+1)-1+1=62k+1+1=6(2k-1)+2+1=62k-1×62+1═62k-1×36+1═62k-1×(35+1)+1=62k-1×35+62k-1+1=62k-1×5×7+(62k-1+1)
由假設(shè)知62k-1×5×7+(62k-1+1)能被7整除
所以當(dāng)n=k+1時(shí),命題也成立
由①②可知,62n-1+1(n∈N•)能被7整除
點(diǎn)評(píng) 本題主要考查數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的基本形式:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1°P(n0)成立(奠基),2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{3}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com