12.某企業(yè)為節(jié)能減排,用9萬元購進(jìn)一臺(tái)新設(shè)備用于生產(chǎn),第一年需運(yùn)營費(fèi)用2萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加3萬元,該設(shè)備每年生產(chǎn)的收入均為21萬元,設(shè)該設(shè)備使用了n(n∈N*)年后,盈利總額達(dá)到最大值(盈利額等于收入減去成本),則n等于(  )
A.6B.7C.8D.7或8

分析 根據(jù)題意建立等差數(shù)列模型,利用等差數(shù)列的性質(zhì)以及求和公式即可得到結(jié)論.

解答 解:設(shè)該設(shè)備第n年的營運(yùn)費(fèi)為an萬元,則數(shù)列{an}是以2為首項(xiàng),3為公差的等差數(shù)列,則an=3n-1,
則該設(shè)備使用了n年的營運(yùn)費(fèi)用總和為Tn=$\frac{n(2+3n-1)}{2}$=$\frac{3}{2}$n2+$\frac{1}{2}$n,
設(shè)第n年的盈利總額為Sn,則Sn=21n-($\frac{3}{2}$n2+$\frac{1}{2}$n)-9=-$\frac{3}{2}$n2+$\frac{41}{2}$n-9,
∴由二次函數(shù)的性質(zhì)可知:n=$\frac{41}{6}$時(shí),Sn取得最大值,
∵n∈N*,故當(dāng)n=7時(shí),Sn取得最大值,
故選:B.

點(diǎn)評(píng) 本題主要考查與數(shù)列有關(guān)的應(yīng)用問題,考查等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,二次函數(shù)函數(shù)的最值,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.近年來,隨著私家車數(shù)量的不斷增加,交通違法現(xiàn)象也越來越嚴(yán)重,孝感市交警大隊(duì)在某天17:00~20:00這一時(shí)段內(nèi),開展整治酒駕專項(xiàng)行動(dòng),采取蹲點(diǎn)守候隨機(jī)抽查的方式,每隔3分鐘檢查一輛經(jīng)過的私家車.這種抽樣方法屬于(  )
A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.定點(diǎn)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=f(x)在[1,3]上單調(diào)遞減,且函數(shù)f(x+3)是偶函數(shù),則下列結(jié)論成立的是(  )
A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為2的兩個(gè)全等的等腰直角三角形,俯視圖是圓心角為$\frac{π}{2}$的扇形,則該幾何體的側(cè)面積為( 。
A.2B.4+πC.4+$\sqrt{2}$πD.4+π+$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC滿足BC•AC=2$\sqrt{2}$,若C=$\frac{3π}{4}$,$\frac{sinA}{sinB}$=$\frac{1}{2cos(A+B)}$,則AB=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2016年巴西奧運(yùn)會(huì)的周邊商品有80%左右為“中國制造”,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測(cè)量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào)12345
x169178166175180
y7580777081
(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:
(2)當(dāng)產(chǎn)品中的微量元素x、y滿足:x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tanα=3,則sin2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正數(shù)x、y滿足x+y=3,則$\frac{4}{x}$+$\frac{1}{y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=$\frac{1}{3}$x3+x2-ax+3a在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(-∞,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案