【題目】設(shè)集合,若X是的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為的奇(偶)子集.
(1)寫出S4的所有奇子集;
(2)求證:的奇子集與偶子集個數(shù)相等;
(3)求證:當(dāng)n≥3時,的所有奇子集的容量之和等于所有偶子集的容量之和.
【答案】見解析
【解析】(1).
(2)對于的奇子集,
當(dāng)時,取;
當(dāng)時,取,則為的偶子集.
反之,若為的偶子集,
當(dāng)時,取;
當(dāng)時,取,則為的奇子集.
的奇子集與偶子集之間建立了一一對應(yīng)的關(guān)系,所以的奇子集和偶子集的個數(shù)相等.
(3)對于任意,當(dāng)時,含的的子集共有個.
由(2)可知,對每個數(shù),在奇子集與偶子集中,所占的個數(shù)是相等的;
當(dāng)時,將(2)中的1換成3即可.可知在奇子集與偶子集中所占的個數(shù)是相等的.
則每個元素在奇子集與偶子集中所占的個數(shù)相等.
所以Sn的所有奇子集的容量之和等于所有偶子集的容量之和.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象上有一點列,點在軸上的射影是,且 (且), .
(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;
(2)對任意的正整數(shù),當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
(3)設(shè)四邊形的面積是,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是( )
A.多于4個 B.4個
C.3個 D.2個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“獲獎與學(xué)生的文理科有關(guān)”?
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
附表及公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若對任意及任意, ,恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象過點,且在該點處的切線與直線垂直.
(1)求實數(shù),的值;
(2)對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以為直角頂點的直角三角形,且此三角形斜邊中點在軸上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過橢圓: 的短軸端點, 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.
(1)求橢圓的方程;
(2)過點作圓的一條切線交橢圓于兩點,求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com