13.某幾何體的三視圖如圖所示,該幾何體外接球的體積為( 。
A.288πB.72πC.36πD.18π

分析 由已知中的三視圖,可知該幾何體是一個(gè)以直角三角形為底面的直三棱柱,可以采用“補(bǔ)形還原法”,該幾何體是長方體沿大的平面切去一半而得到,根據(jù)長方體的外接球的直徑是它的對角線,即可求出球的半徑.

解答 解:由已知中的三視圖,可知該幾何體是一個(gè)以直角三角形為底面的直三棱柱,補(bǔ)形還原該幾何體是長方體沿大的平面切去一半而得到.根據(jù)長方體的外接球的直徑是它的對角線,即2R=$\sqrt{{a}^{2}+^{2}+{c}^{2}}$
∴2R=$\sqrt{{2}^{2}+{4}^{2}+{2}^{2}}=2\sqrt{6}$
解得:$R=\sqrt{6}$,
那么${S}_{球}=4π{R}^{2}=36π$.
故選C.

點(diǎn)評 本題考查的知識點(diǎn)是三視圖的認(rèn)識和球的結(jié)合,解決本題的關(guān)鍵是知道該幾何體的形狀,直棱柱類型,可以采用“補(bǔ)形還原法”補(bǔ)形成我們熟悉的圖形來求解.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.log4[log4(log381)]=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=lnx+ax,$g(x)=\frac{1}{2}a{x^2}-(2a+1)x$
(1)若a=1,證明:x∈[1,2]時(shí),$f(x)-3<\frac{1}{x}$成立
(2)討論函數(shù)y=f(x)+g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.現(xiàn)有6本不同的書,按以下要求各有多少種分法?
(1)平均分成三組;
(2)平均分給甲、乙、丙三人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U=R,集合A={x||x-1|≤2},B={x|x<1},則集合∁U(A∩B)=(  )
A.{x|-1<x≤3}B.{x|x≥1或x<-1}C.{x|x>3}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的函數(shù)y=f(x)對于任意的x都滿足f(x+2)=f(x).當(dāng)-1≤x<1時(shí),f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|至少有6個(gè)零點(diǎn),則a的取值范圍是(0,$\frac{1}{5}$]∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overrightarrow{x}$$\overrightarrow{y}$$\overrightarrow{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利率z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(1)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
(ⅱ)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸)中,曲線C2的方程為ρsin2θ=2pcosθ(p>0),曲線C1、C2交于A、B兩點(diǎn).
(Ⅰ)若p=2且定點(diǎn)P(0,-4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比數(shù)列,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=sinxcosx-cos2(x+$\frac{π}{4}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若f($\frac{A}{2}$)=$\frac{\sqrt{3}-1}{2}$,a=1,b+c=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案