18.已知定義在R上的函數(shù)y=f(x)對(duì)于任意的x都滿足f(x+2)=f(x).當(dāng)-1≤x<1時(shí),f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|至少有6個(gè)零點(diǎn),則a的取值范圍是(0,$\frac{1}{5}$]∪(5,+∞).

分析 函數(shù)g(x)=f(x)-loga|x|的零點(diǎn)個(gè)數(shù),即函數(shù)y=f(x)與y=log5|x|的交點(diǎn)的個(gè)數(shù),由函數(shù)圖象的變換,分別做出y=f(x)與y=loga|x|的圖象,結(jié)合圖象可得loga5<1 或 loga5≥-1,由此求出a的取值范圍.

解答 解:根據(jù)題意,函數(shù)g(x)=f(x)-loga|x|的零點(diǎn)個(gè)數(shù),
即函數(shù)y=f(x)與y=loga|x|的交點(diǎn)的個(gè)數(shù);
f(x+2)=f(x),函數(shù)f(x)是周期為2的周期函數(shù),
又由當(dāng)-1<x≤1時(shí),f(x)=x3
據(jù)此可以做出f(x)的圖象,
y=loga|x|是偶函數(shù),當(dāng)x>0時(shí),y=logax,
則當(dāng)x<0時(shí),y=loga(-x),做出y=loga|x|的圖象,
結(jié)合圖象分析可得:
要使函數(shù)y=f(x)與y=loga|x|至少有6個(gè)交點(diǎn),
則 loga5<1 或 loga5≥-1,解得 a>5,或 0<a≤$\frac{1}{5}$.
所以a的取值范圍是(0,$\frac{1}{5}$]∪(5,+∞).
故答案為:(0,$\frac{1}{5}$]∪(5,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)圖象的變化與應(yīng)用問(wèn)題,涉及函數(shù)的周期性,對(duì)數(shù)函數(shù)的圖象等知識(shí)點(diǎn),關(guān)鍵是作出函數(shù)的圖象,由此分析兩個(gè)函數(shù)圖象交點(diǎn)的個(gè)數(shù),是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下面有5個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②若α為第二象限角,則$\frac{α}{3}$在一、三、四象限;
③在同一坐標(biāo)系中,函數(shù)y=sin x的圖象和函數(shù)y=x的圖象有3個(gè)公共點(diǎn).
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù).
其中,真命題的編號(hào)是①④.(寫出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.時(shí)針走過(guò)2時(shí)40分,則分針轉(zhuǎn)過(guò)的角度是(  )
A.80°B.-80°C.960°D.-960°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知A={x||x-a|≤2},B={x||x-1}|≥3},若A∩B=∅,則
(1)求集合B;
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某幾何體的三視圖如圖所示,該幾何體外接球的體積為( 。
A.288πB.72πC.36πD.18π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知三棱錐S-ABC所有頂點(diǎn)都在球O的表面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,則球O的表面積為( 。
A.$\frac{5}{2}$πB.C.D.$\frac{5}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x3cosx+1,若f(a)=11,則f(-a)=( 。
A.-6B.6C.-9D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在極坐標(biāo)系中,已知圓C經(jīng)過(guò)點(diǎn)($\sqrt{2}$,$\frac{π}{4}$),圓心為直線ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$與極軸的交點(diǎn)
(1)求圓C的圓心坐標(biāo);
(2)求圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列關(guān)于向量的說(shuō)法中,正確的是( 。
A.長(zhǎng)度相等的兩向量必相等B.兩向量相等,其長(zhǎng)度不一定相等
C.向量的大小與有向線段的起點(diǎn)無(wú)關(guān)D.向量的大小與有向線段的起點(diǎn)有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案