如圖,在四棱錐中,平面,底面是菱形,.
(1)求證:平面
(2)若求與所成角的余弦值;
(1)見解析;(2)
【解析】
試題分析:證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質定理;三是平行線法(若兩條平行線中的一條垂直于這個平面,則另一條也垂直于這個平面.解題時,注意線線、線面與面面關系的相互轉化. 過空間任意一點引兩條直線分別平行于兩條異面直線,它們所成的銳角(或直角)就是異面直線所成的角。 (注:當所成角為90°時,兩直線垂直。)求兩條異面直線所成角的大小一般方法是通過平行移動直線,把異面問題轉化為共面問題來解決。 異面直線所成角的步驟一般是①平移其中一條或兩條使其相交。②連接端點,使角在一個三角形中。③計算三條邊長,用余弦定理計算余弦值。④若余弦值為負,則取其相反數。
試題解析:證明:∵ABCD是菱形∴
∵PA平面ABCD,BD平面ABCD,∴PABD
PAAC=A,PA平面PAC,AC平面PAC
∴BD平面PAC
(2)延長DA到E,使AE=DA,連接BE,PE,則AEBC
∴四邊形AEBC為平行四邊形
∴BE//AC,
∴BE與BP所成的角就是兩異面直線所成的角即
在中, PA=2,AE=2,PAAE,∴PE=,BE=AC=,PB=
∴
考點:直線與平面垂直的判斷及異面直線所成的角
科目:高中數學 來源:2014年吉林省延邊州高考復習質量檢測文科數學試卷(解析版) 題型:選擇題
表示不同直線,M表示平面,給出四個命題:①若∥M,∥M,則∥或 相交或異面;②若M,∥,則∥M;③⊥,⊥,則∥;④⊥M,⊥M,則∥,其中正確命題為
A.①④ B.②③ C.③④ D.①②
查看答案和解析>>
科目:高中數學 來源:2014-2015學年江西省高二上學期開學考試數學試卷(解析版) 題型:選擇題
已知x,y的取值如右表:從散點圖可以看出y與x線性相關,且回歸方程為,則( )
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
A.3.25 B.2.6 C.2.2 D.0
查看答案和解析>>
科目:高中數學 來源:2014-2015學年江蘇省高郵市高二學情檢測數學試卷(解析版) 題型:填空題
一個正方體紙盒展開后如圖所示,在原正方體紙盒中有如下結論:
①AB⊥EF;②AB與CM所成的角為60°;③EF與MN是異面直線;④MN∥CD.
以上結論中正確的序號為________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥選修4-4第3課時練習卷(解析版) 題型:解答題
已知函數f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數x恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com