【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典.其中對勾股定理的論術(shù)比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )
(注:1丈=10尺=100寸, , )
A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓E的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且在拋物線的準(zhǔn)線上,點(diǎn)是橢圓E上的一個動點(diǎn), 面積的最大值為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過焦點(diǎn)作兩條平行直線分別交橢圓E于四個點(diǎn).
①試判斷四邊形能否是菱形,并說明理由;
②求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年5月20日,針對部分“二線城市”房價(jià)上漲過快,媒體認(rèn)為國務(wù)院常務(wù)會議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關(guān)于“國五條”態(tài)度進(jìn)行了調(diào)查,隨機(jī)抽取了人,作出了他們的月收入的頻率分布直方圖(如圖),同時(shí)得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計(jì)表(如下表):
月收入(百元) | 贊成人數(shù) |
(1)試根據(jù)頻率分布直方圖估計(jì)這人的中位數(shù)和平均月收入;
(2)若從月收入(單位:百元)在的被調(diào)查者中隨機(jī)選取人進(jìn)行追蹤調(diào)查,求被選取的人都不贊成的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府為了對房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對外來人口和當(dāng)?shù)厝丝谶M(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表(不全):
已知樣本中外來人口數(shù)與當(dāng)?shù)厝丝跀?shù)之比為3:8.
(1)補(bǔ)全上述列聯(lián)表;
(2)從參與調(diào)研的外來人口中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)外來人口的某項(xiàng)收入指標(biāo),若一個買房人的指標(biāo)記為3,一個猶豫人的指標(biāo)記為2,一個不買房人的指標(biāo)記為1,現(xiàn)在從這6人中再隨機(jī)選取3人,求選取的3人的指標(biāo)之和大于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)設(shè)不等式對滿足的一切實(shí)數(shù)的取值都成立,求的取值范圍;
(Ⅱ)是否存在實(shí)數(shù),使得不等式對滿足的一切實(shí)數(shù)的取值都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),順次連接橢圓的四個頂點(diǎn)得到的四邊形的面積為,點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)已知點(diǎn),是橢圓上的兩點(diǎn).
(。┤,且為等邊三角形,求的面積;
(ⅱ)若,證明: 不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,點(diǎn)E為AB中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求證:A1D⊥平面ABD1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題中正確的個數(shù)是( ) (1.)若x∈R,則x2+ ≥x;
(2.)若x≠kπ,k∈Z,則sinx+ ≥2;
(3.)設(shè)x,y>0,則 的最小值為8;
(4.)設(shè)x>1,則x+ 的最小值為3.
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com