【題目】某小學(xué)慶“六一”晚會共由6個節(jié)目組成,演出順序有如下要求:節(jié)目必須排在前兩位,節(jié)目不能排在第一位,節(jié)目必須排在最后一位,該臺晚會節(jié)目演出順序的編排方案共有( )

A. 36種 B. 42種 C. 48種 D. 54種

【答案】B

【解析】分析:由題意知A的位置影響B的排列,分兩類:A在第一位和A不在第一位,根據(jù)分類計數(shù)原理得到結(jié)果.

詳解:由題意知A的位置影響B的排列,所以要分兩類:

一類為A排在第一位,C排在最后一位,則其余4個節(jié)目共有A44=24種,

另一類A排在第二位,C排在最后一位,從3,4,5位中排B,其余3個節(jié)目排在剩下的3個位置,共有A31A33=18種,

故編排方案共有24+18=42種,

故答案為:42

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某班學(xué)生的腳長x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機抽取10名學(xué)生,根據(jù)測量數(shù)據(jù)的散點圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學(xué)生的腳長為24,據(jù)此估計其身高為( 。
A.160
B.163
C.166
D.170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),若f( )=f( ),且f(x)在區(qū)間( )上有最小值,無最大值,則ω=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 : 過點的直線交拋物線兩點,設(shè)

(1)若點 關(guān)于軸的對稱點為,求證:直線經(jīng)過拋物線 的焦點;

(2)若求當(dāng)最大時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=(ax2+ax+x+a)ex(a≤0).
(1)討論y=f(x)的單調(diào)性;
(2)當(dāng)a=0時,若f(x1)=f(x2) (x1≠x2),求證x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

總計

30

45

25

45

總計

90

(1)求①②③④處分別對應(yīng)的值;

(2)能有多大把握認為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的值域;

(2)若時,函數(shù)的最小值為,求的值和函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系xOy中,直線l:y=x,圓C: (φ為參數(shù)),以坐標原點為為極點,x軸的正半軸為極軸建立極坐標系. (Ⅰ)求直線l與圓C的極坐標方程;
(Ⅱ)設(shè)直線l與圓C的交點為M,N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點Pn(an,bn)滿足an+1=an·bn+l ,bn+l =(nN*)且點P1的坐標為(1,-1).

(1)求過點P1,P2的直線l的方程;

(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點Pn都在(1)中的直線l上.

查看答案和解析>>

同步練習(xí)冊答案