(1)試問{bn}是否是等差數(shù)列?為什么?
(2)求證:對任意的自然數(shù)p,q(p>q),bp-q2+bp+q2≥2bp2成立;
(3)如果a1=1,b1=,,求.
科目:高中數(shù)學(xué) 來源: 題型:
(12分)設(shè)數(shù)列{an},{bn}都是等差數(shù)列,它們的前n項的和分別為Sn , Tn ,若對一切n ∈ N*,都有Sn+3 = Tn .(1)若a1 ≠ b1,試分別寫出一個符號條件的數(shù)列{an}和{bn};(2)若a1 + b1 = 1,數(shù)列{cn}滿足:cn = 4 an + l(–1)n–12 bn,且當n ∈ N*時,cn+1 ≥ cn恒成立,求實數(shù)l的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知點Pn(an,bn)都在直線:y=2x+2上,P1為直線與x軸的交點,數(shù)列成等差數(shù)列,公差為1.(n∈N+)
(1)求數(shù)列,的通項公式;
(2)若f(n)= 問是否存在k,使得f(k+5)=2f(k)-2成立;若存在,求出k的值,若不存在,說明理由。
(3)求證: (n≥2,n∈N+)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(江西卷解析版) 題型:填空題
設(shè)數(shù)列{an},{bn}都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5=_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知點Pn(an,bn)都在直線:y=2x+2上,P1為直線與x軸的交點,數(shù)列成等差數(shù)列,公差為1.(n∈N+)
(1)求數(shù)列,的通項公式;
(2)若f(n)= 問是否存在k,使得f(k+5)=2f(k)-2成立;若存在,求出k的值,若不存在,說明理由。
(3)求證: (n≥2,n∈N+)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com